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ABSTRACT
Nonparametric methods play a central role in modern empirical work. While they provide inference pro-
cedures that are more robust to parametric misspecification bias, they may be quite sensitive to tuning
parameter choices. We study the effects of bias correction on confidence interval coverage in the context
of kernel density and local polynomial regression estimation, and prove that bias correction can be pre-
ferred to undersmoothing for minimizing coverage error and increasing robustness to tuning parameter
choice. This is achieved using a novel, yet simple, Studentization, which leads to a new way of constructing
kernel-based bias-corrected confidence intervals. In addition, for practical cases, we derive coverage error
optimal bandwidths and discuss easy-to-implement bandwidth selectors. For interior points, we show that
the mean-squared error (MSE)-optimal bandwidth for the original point estimator (before bias correction)
delivers the fastest coverage error decay rate after bias correction when second-order (equivalent) kernels
are employed, but is otherwise suboptimal because it is too “large.”Finally, for odd-degree local polynomial
regression, we show that, as with point estimation, coverage error adapts to boundary points automatically
when appropriate Studentization is used; however, the MSE-optimal bandwidth for the original point esti-
mator is suboptimal. All the results are established using valid Edgeworth expansions and illustrated with
simulated data. Our findings have important consequences for empirical work as they indicate that bias-
corrected confidence intervals, coupled with appropriate standard errors, have smaller coverage error and
are less sensitive to tuning parameter choices in practically relevant cases where additional smoothness is
available. Supplementary materials for this article are available online.

1. Introduction

Nonparametric methods are widely employed in empirical
work, as they provide point estimates and inference procedures
that are robust to parametricmisspecification bias. Kernel-based
methods are commonly used to estimate densities, conditional
expectations, and related functions nonparametrically in a wide
variety of settings. However, these methods require specifying
a bandwidth and their performance in applications crucially
depends on how this tuning parameter is chosen. In particular,
valid inference requires the delicate balancing act of selecting
a bandwidth small enough to remove smoothing bias, yet large
enough to ensure adequate precision. Tipping the scale in either
direction can greatly skew results. This article studies kernel
density and local polynomial regression estimation and infer-
ence based on the popularWald-type statistics anddemonstrates
(via higher-order expansions) that by coupling explicit bias cor-
rection with a novel, yet simple, Studentization, inference can
be made substantially more robust to bandwidth choice, greatly
easing implementability.

Perhaps the most common bandwidth selection approach
is to minimize the asymptotic mean-square error (MSE) of
the point estimator, and then use this bandwidth choice even
when the goal is inference. So difficult is bandwidth selection
perceived to be, that despite the fact that the MSE-optimal
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bandwidth leads to invalid confidence intervals, even asymp-
totically, this method is still advocated, and is the default in
most popular software. Indeed, Hall and Kang (2001, p. 1446)
wrote: “there is a growing belief that the most appropriate
approach to constructing confidence regions is to estimate [the
density] in a way that is optimal for pointwise accuracy.... [I]t
has been argued that such an approach has advantages of clarity,
simplicity and easy interpretation.”

The underlying issue, as formalized below, is that bias must
be removed for valid inference, and the MSE-optimal band-
width (in particular) is “too large,” leaving a bias that is still
first order. Two main methods have been proposed to address
this: undersmoothing and explicit bias correction. We seek to
compare these two, and offer concrete ways to better imple-
ment the latter. Undersmoothing amounts to choosing a band-
width smaller than would be optimal for point estimation, then
arguing that the bias is smaller than the variability of the esti-
mator asymptotically, leading to valid distributional approx-
imations and confidence intervals. In practice, this method
often involves simply shrinking the MSE-optimal bandwidth
by an ad hoc amount. The second approach is to bias cor-
rect the estimator with the explicit goal of removing the bias
that caused the invalidity of the inference procedure in the first
place.
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It has long been believed that undersmoothing is preferable
for two reasons. First, theoretical studies showed inferior asymp-
totic coverage properties of bias-corrected confidence intervals.
The pivotal work was done by Hall (1992b), and has been
relied upon since. Second, implementation of bias correction
is perceived as more complex because a second (usually differ-
ent) bandwidth is required, deterring practitioners. However,
we show theoretically that bias correction is always as good as
undersmoothing, and better in many practically relevant cases,
if the new standard errors that we derive are used. Further,
our findings have important implications for empirical work
because the resulting confidence intervals are more robust to
bandwidth choice, including to the bandwidth used for bias esti-
mation. Indeed, the two bandwidths may be set equal, a simple
and automatic choice that performs well in practice and is opti-
mal in certain objective senses.

Our proposed robust bias correction method delivers valid
confidence intervals (and related inference procedures) even
when using the MSE-optimal bandwidth for the original point
estimator, the most popular approach in practice. Moreover, we
show that at interior points, when using second-order kernels
or local linear regressions, the coverage error of such intervals
vanishes at the best possible rate. (Throughout, the notion of
“optimal” or “best” rate is defined as the fastest achievable cov-
erage error decay for a fixed kernel order or polynomial degree;
and is also different from optimizing point estimation.) When
higher-order kernels are used, or boundary points are consid-
ered, we find that the corresponding MSE-optimal bandwidth
leads to asymptotically valid intervals, but with suboptimal
coverage error decay rates, and must be shrunk (sometimes
considerably) for better inference.

Heuristically, employing theMSE-optimal bandwidth for the
original point estimator, prior to bias correction, is like under-
smoothing the bias-corrected point estimator, though the lat-
ter estimator employs a possibly random, n-varying kernel, and
requires a different Studentization scheme. It follows that the
conventional MSE-optimal bandwidth commonly used in prac-
tice need not be optimal, even after robust bias correction, when
the goal is inference. Thus, we present new coverage error opti-
mal bandwidths and a fully data-driven direct plug-in imple-
mentation thereof, for use in applications. In addition, we study
the important related issue of asymptotic length of the new con-
fidence intervals.

Our comparisons of undersmoothing and bias correction
are based on Edgeworth expansions for density estimation and
local polynomial regression, allowing for different levels of
smoothness of the unknown functions. We prove that explicit
bias correction, coupled with our proposed standard errors,
yields confidence intervals with coverage that is as accurate,
or better, than undersmoothing (or, equivalently, yields dual
hypothesis tests with lower error in rejection probability).
Loosely speaking, this improvement is possible because explicit
bias correction can remove more bias than undersmooth-
ing, while our proposed standard errors capture not only the
variability of the original estimator but also the additional
variability from bias correction. To be more specific, our robust
bias correction approach yields higher-order refinements when-
ever additional smoothness is available, and is asymptotically

equivalent to the best undersmoothing procedure when no
additional smoothness is available.

Our findings contrast with well-established recommen-
dations: Hall (1992b) used Edgeworth expansions to show
that undersmoothing produces more accurate intervals than
explicit bias correction in the density case and Neumann (1997)
repeated this finding for kernel regression. The key distinc-
tion is that their expansions, while imposing the same levels of
smoothness as we do, crucially relied on the assumption that the
bias correction was first-order negligible, essentially forcing bias
correction to remove less bias than undersmoothing. In con-
trast, we allow the bias estimator to potentially have a first-order
impact, an alternative asymptotic experiment designed to more
closely mimic the finite-sample behavior of bias correction.
Therefore, our results formally show that whenever additional
smoothness is available to characterize leading bias terms, as is
usually the case in practice where MSE-optimal bandwidth are
employed, our robust bias correction approach yields higher-
order improvements relative to standard undersmoothing.

Our standard error formulas are based on fixed-n calcula-
tions, as opposed to asymptotics, which also turns out to be
important. We show that using asymptotic variance formulas
can introduce further errors in coverage probability, with partic-
ularly negative consequences at boundary points. This turns out
to be at the heart of the “quite unexpected” conclusion found by
Chen andQin (2002,Abstract) that local polynomial-based con-
fidence intervals are not boundary-adaptive in coverage error:
we prove that this is not the case with proper Studentization.
Thus, as a by-product of our main theoretical work, we estab-
lish higher-order boundary carpentry of local polynomial based
confidence intervals that use a fixed-n standard error formula, a
result that is of independent (but related) interest.

This article is connected to the well-established literature
on nonparametric smoothing, see Wand and Jones (1995), Fan
and Gijbels (1996), Horowitz (2009), and Ruppert, Wand, and
Carroll (2009) for reviews. For more recent work on bias and
related issues in nonparametric inference, seeHall andHorowitz
(2013), Calonico, Cattaneo, and Titiunik (2014), Armstrong and
Kolesár (2017), Schennach (2015), and references therein. We
also contribute to the literature onEdgeworth expansions, which
have been used both in parametric and, less frequently, nonpara-
metric contexts; see, for example, Bhattacharya and Rao (1976)
and Hall (1992a). Fixed-n versus asymptotic-based Studentiza-
tion has also captured some recent interest in other contexts, for
example, Mykland and Zhang (2017). Finally, see Calonico, Cat-
taneo, and Farrell (2016) for uniformly valid Edgeworth expan-
sions and optimal inference.

The article proceeds as follows. Section 2 studies den-
sity estimation at interior points and states the main results
on error in coverage probability and its relationship to bias
reduction and underlying smoothness, as well as discussing
bandwidth choice and interval length. Section 3 then studies
local polynomial estimation at interior and boundary points.
Practical guidance is explicitly discussed in Sections 2.4 and
3.3, respectively; all methods are available in R and STATA via
the nprobust package, see Calonico, Cattaneo, and Farrell
(2017). Section 4 summarizes the results of aMonte Carlo study,
and Section 5 concludes. Some technical details, all proofs, and
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additional simulation evidence are collected in a lengthy online
supplement.

2. Density Estimation and Inference

We first present ourmain ideas and conclusions for inference on
the density at an interior point, as this requires relatively little
notation. The data are assumed to obey the following.

Assumption 1 (Data-generating process). {X1, . . . ,Xn} is a ran-
dom sample with an absolutely continuous distribution with
Lebesgue density f . In a neighborhood of x, f > 0, f is
S-times continuously differentiable with bounded derivatives
f (s), s = 1, 2, . . . , S, and f (S) is Hölder continuous with expo-
nent ς .

The parameter of interest is f (x) for a fixed scalar point x in
the interior of the support. (In the supplemental appendix, we
discuss how our results extend naturally to multivariate Xi and
derivative estimation.) The classical kernel-based estimator of
f (x) is

f̂ (x) = 1
nh

n∑

i=1

K
(
x − Xi

h

)
, (1)

for a kernel function K that integrates to 1 and positive band-
width h → 0 as n → ∞. The choice of h can be delicate, and
our work is motivated in part by the standard empirical practice
of employing theMSE-optimal bandwidth choice for f̂ (x)when
conducting inference.

In this vein, let us suppose for the moment that K is a kernel
of order k, where k ≤ S so that theMSE-optimal bandwidth can
be characterized. The bias is then given by

E[ f̂ (x)] − f (x) = hk f (k)(x)µK,k + o(hk), (2)

where f (k)(x) := ∂k f (x)/∂xk and µK,k =
∫
ukK(u)du/k!.

Computing the variance gives

(nh)V[ f̂ (x)] = 1
h

{

E
[

K
(
x − Xi

h

)2
]

− E
[
K

(
x − Xi

h

)]2
}

,

(3)

which is nonasymptotic: n and h are fixed in this calcula-
tion. Using other, first-order valid approximations, for example,
(nh)V[ f̂ (x)] ≈ f (x)

∫
K(u)2du, will have finite sample con-

sequences that manifest as additional terms in the Edgeworth
expansions. In fact, Section 3 shows that using an asymptotic
variance for local polynomial regression removes automatic
coverage-error boundary adaptivity.

Together, the prior two displays are used to characterize the
MSE-optimal bandwidth, h∗

mse ∝ n−1/(1+2k). However, using
this bandwidth leaves a bias that is too large, relative to the vari-
ance, to conduct valid inference for f (x). To address this impor-
tant practical problem, researchersmust either undersmooth the
point estimator (i.e., construct f̂ (x) with a bandwidth smaller
than h∗

mse) or bias-correct the point estimator (i.e., subtract an
estimate of the leading bias). Thus, the question we seek to
answer is this: if the bias is given by (2), is one better off esti-
mating the leading bias (explicit bias correction) or choosing

h small enough to render the bias negligible (undersmoothing)
when forming nonparametric confidence intervals?

To answer this question, and to motivate our new robust
approach, we first detail the bias correction and variance esti-
mators. Explicit bias correction estimates the leading term of
Equation (2), denoted by B f , using a kernel estimator of f (k)(x),
defined as

B̂ f = hk f̂ (k)(x)µK,k,

where

f̂ (k)(x) = 1
nb1+k

n∑

i=1

L(k)

(
x − Xi

b

)
,

for a kernel L(·) of order ℓ and a bandwidth b → 0 as n → ∞.
Importantly, B̂ f takes this form for any k and S, even if (2) fails;
see Sections 2.2 and 2.3 for discussion. Conventional Studen-
tized statistics based on undersmoothing and explicit bias cor-
rection are, respectively,

Tus(x) =
√
nh

(
f̂ (x) − f (x)

)

σ̂us

and

Tbc(x) =
√
nh

(
f̂ (x) − B̂ f − f (x)

)

σ̂us
,

where σ̂ 2
us := V̂[ f̂ (x)] is the natural estimator of the variance of

f̂ (x), which only replaces the two expectations in (3) with sam-
ple averages, thus maintaining the nonasymptotic spirit. These
are the two statistics compared in the influential article of Hall
(1992b), under the same assumption imposed herein.

From the form of these statistics, two points are already clear.
First, the numerator of Tus relies on choosing h vanishing fast
enough so that the bias is asymptotically negligible after scal-
ing, whereas Tbc allows for slower decay by virtue of the man-
ual estimation of the leading bias. Second, Tbc requires that the
variance of hk f̂ (k)(x)µK,k be first-order asymptotically negligi-
ble: σ̂us in the denominator only accounts for the variance of the
main estimate, but f̂ (k)(x), being a kernel-based estimator, nat-
urally has a variance controlled by its bandwidth. That is, even
though σ̂ 2

us is based on a fixed-n calculation, the variance of the
numerator of Tbc only coincides with the denominator asymp-
totically. Under this regime, Hall (1992b) showed that the bias
reduction achieved in Tbc is too expensive in terms of noise and
that undersmoothing dominates explicit bias correction for cov-
erage error.

We argue that there need not be such a “mismatch” between
the numerator of the bias-corrected statistic and the Studentiza-
tion, and thus consider a third option corresponding to the idea
of capturing the finite sample variability of f̂ (k)(x) directly. To
do so, note that we may write, after setting ρ = h/b,

f̂ (x) − hk f̂ (k)(x)µK,k = 1
nh

n∑

i=1

M
(
x − Xi

h

)
,

M(u) = K(u) − ρ1+kL(k)(ρu)µK,k. (4)

We then define the collective variance of the density estimate
and the bias correction as σ 2

rbc = (nh)V[ f̂ (x) − B̂ f ], exactly as
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in Equation (3), but with M(·) in place of K(·), and its estima-
tor σ̂ 2

rbc exactly as σ̂ 2
us. Therefore, our proposed robust bias-

corrected inference approach is based on

Trbc =
√
nh

(
f̂ (x) − hk f̂ (k)(x)µK,k − f (x)

)

σ̂rbc
.

That is, our proposed standard errors are based on a fixed-
n calculation that captures the variability of both f̂ (x) and
f̂ (k)(x), and their covariance. As shown in Section 3, the case of
local polynomial regression is analogous, but notationally more
complicated.

The quantity ρ = h/b is key. If ρ → 0, then the second term
ofM is dominated by the first, that is, the bias correction is first-
order negligible. In this case, σ 2

us and σ 2
rbc (and their estima-

tors) will be first-order, but not higher-order, equivalent. This is
exactly the sense in which traditional bias correction relies on
an asymptotic variance, instead of a fixed-n one, and pays the
price in coverage error. To more accurately capture finite sam-
ple behavior of bias correction we allow ρ to converge to any
(nonnegative) finite limit, allowing (but not requiring) the bias
correction to be first-order important, unlike prior work. We
show that doing so yields more accurate confidence intervals
(i.e., higher-order corrections).

2.1. Generic Higher-Order Expansions of Coverage Error

We first present generic Edgeworth expansions for all three
procedures (undersmoothing, traditional bias correction, and
robust bias correction), which are agnostic regarding the level
of available smoothness (controlled by S in Assumption 1). To
be specific, we give higher-order expansions of the error in cov-
erage probability of the following (1 − α)%confidence intervals
based on Normal approximations for the statistics Tus, Tbc, and
Trbc:

Ius =
[
f̂ − z1− α

2

σ̂us√
nh

, f̂ − z α
2

σ̂us√
nh

]
,

Ibc =
[
f̂ − B̂ f − z1− α

2

σ̂us√
nh

, f̂ − B̂ f − z α
2

σ̂us√
nh

]
,

and

Irbc =
[
f̂ − B̂ f − z1− α

2

σ̂rbc√
nh

, f̂ − B̂ f − z α
2

σ̂rbc√
nh

]
, (5)

where zα is the upper α-percentile of the Gaussian distribution.
Here and in the sequel, we omit the point of evaluation x for
simplicity. Equivalently, our results can characterize the error
in rejection probability of the corresponding hypothesis tests.
In subsequent sections, we give specific results under different
smoothness assumptions and make direct comparisons of the
methods.

We require the following standard conditions on the kernels
K and L.
Assumption 2 (Kernels). The kernels K and L are bounded, even
functions with support [−1, 1], and are of order k ≥ 2 and ℓ ≥
2, respectively, wherek and ℓ are even integers. That is,µK,0 = 1,
µK,k = 0 for 1 ≤ k < k, and µK,k ̸= 0 and bounded, and simi-
larly for µL,k with ℓ in place of k. Further, L is k-times contin-
uously differentiable. For all integers k and l such that k + l =

k − 1, f (k)(x0)L(l)((x0 − x)/b) = 0 for x0 in the boundary of
the support.

The boundary conditions are needed for the derivative esti-
mation inherent in bias correction, even if x is an interior point,
and are satisfied if the support of f is the whole real line. Higher-
order results also require a standard n-varying Cramér’s con-
dition, given in the supplement to conserve space (see Section
S.I.3). Altogether, our assumptions are identical to those of Hall
(1991, 1992b).

To state the results some notation is required. First, let the
(scaled) biases of the density estimator and the bias-corrected
estimator be ηus =

√
nh(E[ f̂ ] − f ) and ηbc =

√
nh(E[ f̂ −

B̂ f ] − f ). Next, let φ(z) be the standard Normal density, and
for any kernel K define

q1(K) = ϑ−2
K,2ϑK,4

(
z3α

2
− 3z α

2

)
/6 − ϑ−3

K,2ϑ
2
K,3

×
[
2z3/3 +

(
z5α

2
− 10z3α

2
+ 15z α

2

)
/9

]
,

q2(K) = −ϑ−1
K,2 z α

2
,

and

q3(K) = ϑ−2
K,2ϑK,3

(
2z3α

2
/3

)
,

where ϑK,k =
∫
K(u)kdu. All that is conceptually important is

that these functions are known, odd polynomials in z with coef-
ficients that depend only on the kernel, and not on the sample or
data-generating process. Our main theoretical result for density
estimation is the following.

Theorem 1. Let Assumptions 1, 2, and Cramér’s condition hold
and nh/ log(nh) → ∞.

(a) If ηus → 0, then

P[ f ∈ Ius] = 1 − α +
{

1
nh

q1(K) + η2
usq2(K) + ηus√

nh
q3(K)

}

φ(z α
2
)

f
{1 + o(1)}.

(b) If ηbc → 0 and ρ → 0, then

P[ f ∈ Ibc] = 1 − α +
{

1
nh

q1(K) + η2
bcq2(K) + ηbc√

nh
q3(K)

}

φ(z α
2
)

f
{1 + o(1)}

+ ρ1+k(*1 + ρk*2)φ(z α
2
)z α

2
{1 + o(1)},

for constants *1 and *2 given precisely in the supple-
ment.

(c) If ηbc → 0 and ρ → ρ̄ < ∞, then

P[ f ∈ Irbc] = 1 − α +
{

1
nh

q1(M) + η2
bcq2(M) + ηbc√

nh
q3(M)

}

φ(z α
2
)

f
{1 + o(1)}.

This result leaves the scaled biases ηus and ηbc generic, which
is useful when considering different levels of smoothness S, the
choices of k and ℓ, and in comparing to local polynomial results.
In the next subsection, we make these quantities more precise
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and compare them, paying particular attention to the role of the
underlying smoothness assumed.

At present, the most visually obvious feature of this result
is that all the error terms are of the same form, except for the
notable presence of ρ1+k(*1 + ρk*2) in part (b). These are the
leading terms of σ 2

rbc/σ
2
us − 1, consisting of the covariance of

f̂ and B̂ f (denoted by *1) and the variance of B̂ f (denoted by
*2), and are entirely due to the “mismatch” in the Studentization
of Tbc. Hall (1992b) showed how these terms prevent bias cor-
rection from performing as well as undersmoothing in terms of
coverage. In essence, the potential for improved bias properties
do not translate into improved inference because the variance is
not well-controlled: in any finite sample, B̂ f would inject vari-
ability (i.e., ρ = h/b > 0 for each n) and thus ρ → 0 may not
be a good approximation. Our new Studentization does not sim-
ply remove these leading ρ terms; the entire sequence is absent.
As explained below, allowing for ρ̄ = ∞ cannot reduce bias, but
will inflate variance; hence restricting to ρ̄ < ∞ capitalizes fully
on the improvements from bias correction.

2.2. Coverage Error and the Role of Smoothness

Theorem 1 makes no explicit assumption about smoothness
beyond the requirement that the scaled biases vanish asymp-
totically. The fact that the error terms in parts (a) and (c) of
Theorem 1 take the same form implies that comparing cover-
age error amounts to comparing bias, for which the smoothness
S and the kernel orders k and ℓ are crucial. We now make the
biases ηus and ηbc concrete and show how coverage is affected.

For Ius, two cases emerge: (a) enough derivatives exist to
allow characterization of the MSE-optimal bandwidth (k ≤ S);
and (b) no such smoothness is available (k > S), in which case
the leading term of Equation (2) is exactly zero and the bias
depends on the unknownHölder constant. These two cases lead
to the following results.

Corollary 1. Let Assumptions 1, 2, and Cramér’s condition hold
and nh/ log(nh) → ∞.

(a) If k ≤ S and
√
nhhk → 0,

P[ f ∈ Ius] = 1 − α +
{

1
nh

q1(K) + nh1+2k( f (k))2µ2
K,kq2(K)

+ hk f (k)µK,kq3(K)

}
φ(z α

2
)

f
{1 + o(1)}.

(b) If k > S and
√
nhhS+ς → 0,

P[ f ∈ Ius] = 1 − α + 1
nh

φ(z α
2
)

f
q1(K) {1 + o(1)}

+O
(
nh1+2(S+ς ) + hS+ς

)
.

The first result is most directly comparable to Hall (1992b,
sec. 3.4), and many other past articles, which typically take
as a starting point that the MSE-optimal bandwidth can be
characterized. This shows that Tus must be undersmoothed, in
the sense the MSE-optimal bandwidth is “too large” for valid
inference. In fact, we know that Ius(h∗

mse) will asymptotically
undercover becauseTus(h∗

mse) →d N((2k)−1/2, 1) (see the sup-
plement). Instead, the optimal h for coverage error, which can

be characterized and estimated, is equivalent in rates to balanc-
ing variance against bias, not squared bias as in MSE. Part (b)
shows that a faster rate of coverage error decay can be obtained
by taking a sufficiently high-order kernel, relative to the level of
smoothness S, at the expense of feasible bandwidth selection.

Turning to robust bias correction, characterization of ηbc is
more complex as it has two pieces: the second-order bias of
the original point estimator, and the bias of the bias estima-
tor itself. The former is the o(hk) term of Equation (2) and
is not the target of explicit bias correction; it depends either
on higher derivatives, if they are available, or on the Hölder
condition otherwise. To be precise, if k ≤ S − 2, this term is
[hk+2 + o(1)] f (k+2)µKbc,k+2, while otherwise is known only to
be O(hS+ς ). Importantly, the bandwidth b and order ℓ do not
matter here, and bias reduction beyond O(min{hk+2, hS+ς }) is
not possible; there is thus little or no loss in fixing ℓ = 2, which
we assume from now on to simplify notation.

The bias of the bias estimator also depends on the smooth-
ness available: if enough smoothness is available the correspond-
ing bias term can be characterized, otherwise only its order will
be known. To be specific, when smoothness is not binding (k ≤
S − 2), arguably the most practically-relevant case, the leading
termofE[B̂ f ] − B f will be hkb2 f (k+2)µK,kµL,2. Smoothness can
be exhausted in two ways, either by the point estimate itself
(k > S) or by the bias estimation (S − 1 ≤ k ≤ S), and these
two cases yieldO(hkbS−k) andO(hkbS+ς−k), respectively, which
are slightly different in how they depend on the total Hölder
smoothness assumed. (Complete details are in the supplement.)
Note that regardless of the value of k, we set B̂ f = hk f̂ (k)µK,k,
even if k > S and B f ≡ 0.

With these calculations for ηbc, we have the following result.

Corollary 2. Let Assumptions 1, 2, and Cramér’s condition hold,
nh/ log(nh) → ∞, ρ → ρ̄ < ∞, and ℓ = 2.

(a) If k ≤ S − 2 and
√
nhhkb2 → 0,

P[ f ∈ Irbc] = 1 − α +
{

1
nh

q1(Mρ̄ ) + nh1+2(k+2)( f (k+2))2

×
(
µK,k+2 − −2ρ̄ µK,kµL,2

)2 q2(Mρ̄ )

+ hk+2 f (k+2) (
µK,k+2 − −2ρ̄ µK,kµL,2

)
q3(Mρ̄ )

}

×
φ(z α

2
)

f
{1 + o(1)}.

(b) If S − 1 ≤ k ≤ S and
√
nhρkbS+ς → 0,

P[ f ∈ Irbc] = 1 − α + 1
nh

φ(z α
2
)

f
q1(Mρ̄ ) {1 + o(1)}

+O
(
nhρ2kb2(S+ς ) + ρkbS+ς

)
.

(c) If k > S and
√
nh

(
hS+ς ∨ ρkbS

)
→ 0,

P[ f ∈ Irbc] = 1 − α + 1
nh

φ(z α
2
)

f
q1(Mρ̄ ){1 + o(1)}

+O
(
nh(hS+ς ∨ρkbS)2 + (hS+ς ∨ρkbS)

)
.

Part (a) is the most empirically relevant setting, which
reflects the idea that researchers first select a kernel order, then
conduct inference based on that choice, taking the unknown
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smoothness to be nonbinding. The most notable feature of this
result, beyond the formalization of the coverage improvement,
is that the coverage error terms share the same structure as those
of Corollary 1, with k replaced by k + 2, and represent the same
conceptual objects. By virtue of our new Studentization, the
leading variance remains order (nh)−1 and the problematic
correlation terms are absent. We explicitly discuss the advan-
tages of robust bias correction relative to undersmoothing in
the following section.

Part (a) also argues for a bounded, positive ρ. First, because
bias reduction beyondO(hk+2) is not possible, ρ → ∞will only
inflate the variance. On the other hand, ρ̄ = 0 requires a delicate
choice of b and ℓ > 2, else the second bias term dominates ηbc,
and the full power of the variance correction is not exploited,
that is, more bias may be removed without inflating the vari-
ance rate. Hall (1992b, p. 682) remarked that if E[ f̂ ] − f − B f
is (part of) the leading bias term, then “explicit bias correction
[...] is even less attractive relative to undersmoothing.”We show,
on the contrary, that with our proposed Studentization, it is opti-
mal that E[ f̂ ] − f − B f is part of the dominant bias term.

Finally, in both Corollaries above the best possible coverage
error decay rate (for a given S) is attained by exhausting all
available smoothness. This would also yield point estimators
attaining the bound of Stone (1982); robust bias correction can-
not evade such bounds, of course. In both Corollaries, coverage
is improved relative to part (a), but the constants and optimal
bandwidths cannot be quantified. For robust bias correction,
Corollary 2 shows that to obtain the best rate in part (b) the
unknown f (k) must be consistently estimated and ρ must be
bounded and positive, while in part (c), bias estimation merely
adds noise, but this noise is fully accounted for by our new
Studentization, as long as ρ → 0 (b ̸→ 0 is allowed).

2.3. Comparing Undersmoothing and Robust Bias
Correction

We now employ Corollaries 1 and 2 to directly compare non-
parametric inference based on undersmoothing and robust bias
correction. To simplify the discussion, we focus on three con-
crete cases, which illustrate how the comparisons depend on the
available smoothness and kernel order; the messages generalize
to any S and/or k. For this discussion, we let kus and kbc be the
kernel orders used for point estimation in Ius and Irbc, respec-
tively, and restrict attention to sequences h → 0where both con-
fidence intervals are first-order valid, even though robust bias
correction allows for a broader bandwidth range. Finally, we set
ℓ = 2 and ρ̄ ∈ (0,∞) based on the above discussion.

For the first case, assume that f is twice continuously dif-
ferentiable (S = 2) and both methods use second-order kernels
(kus = kbc = ℓ = 2). In this case, bothmethods target the same
bias. The coverage errors for Ius and Irbc then follow directly
from Corollaries 1(a) and 2(b) upon plugging in these kernel
orders, yielding

∣∣P[ f ∈ Ius] − (1 − α)
∣∣ ≍ 1

nh
+ nh5 + h2

and
∣∣P[ f ∈ Irbc] − (1 − α)

∣∣ ≍ 1
nh

+ nh5+2ς + h2+ς .

Because h → 0 and ρ̄ ∈ (0,∞), the coverage error of Irbc van-
ishes more rapidly by virtue of the bias correction. A higher-
order kernel (kus > 2) would yield this rate for Ius.

Second, suppose that the density is four-times continuously
differentiable (S = 4) but second-order kernels are maintained.
The relevant results are now Corollaries 1(a) and 2(a). Both
methods continue to target the same leading bias, but now the
additional smoothness available allows precise characterization
of the improvement shown above, and we have

∣∣P[ f ∈ Ius] − (1 − α)
∣∣ ≍ 1

nh
+ nh5 + h2

and
∣∣P[ f ∈ Irbc] − (1 − α)

∣∣ ≍ 1
nh

+ nh9 + h4.

This case is perhaps the most empirically relevant one, where
researchers first choose the order of the kernel (here, sec-
ond order) and then conduct/optimize inference based on that
choice. Indeed, for this case optimal bandwidth choices can be
derived (Section 2.4).

Finally, maintain S = 4 but suppose that undersmoothing is
based on a fourth-order kernel while bias correction continues
to use two second-order kernels (kus = 4, kbc = ℓ = 2). This
is the exact example given by Hall (1992b, p. 676). Now the
two methods target different biases, but use the same amount of
smoothness. In this case, the relevant results are again Corollar-
ies 1(a) and 2(a), now with k = 4 and k = 2, respectively. The
two methods have the same coverage error decay rate:

∣∣P[ f ∈ Ius] − (1 − α)
∣∣ ≍

∣∣P[ f ∈ Irbc] − (1 − α)
∣∣

≍ 1
nh

+ nh9 + h4.

Indeed, more can be said: with the notation of Equation (4), the
difference between Tus and Trbc is the change in “kernel” from
K toM, and since kbc + ℓ = kus, the two kernels are the same
order. (M acts as an n-varying, higher-order kernel for bias, but
maynot strictlyfit the definition, as explored in the supplement.)
This tight link between undersmoothing and robust bias correc-
tion does not carry over straightforwardly to local polynomial
regression, as we discuss in more detail in Section 3.

In the context of this final example, it is worth revisiting tra-
ditional bias correction. The fact that undersmoothing targets a
different, and asymptotically smaller, bias than does explicit bias
correction, coupled with the requirement that ρ → 0, implic-
itly constrains bias correction to remove less bias than under-
smoothing. This is necessary for traditional bias correction,
but on the contrary, robust bias correction attains the same
coverage error decay rate as undersmoothing under the same
assumptions.

In sum, these examples show that under identical assump-
tions, bias correction is not inferior to undersmoothing and if
any additional smoothness is available, can yield improved cov-
erage error. These results are confirmed in our simulations.

2.4. Optimal Bandwidth andData-Driven Choice

The prior sections established that robust bias correction can
equal, or outperform, undersmoothing for inference. We now
show how the method can be implemented to deliver these
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results in applications. We mimic typical empirical practice
where researchers first choose the order of the kernel, then con-
duct/optimize inference based on that choice. Therefore, we
assume the smoothness is unknown but taken to be large and
workwithinCorollary 2(a), that is, viewing k ≤ S − 2 and ℓ = 2
as fixed and ρ bounded and positive. This setup allows charac-
terization of the coverage error optimal bandwidth for robust
bias correction.

Corollary 3. Under the conditions of Corollary 2(a) with
ρ̄ ∈ (0,∞), if h = h∗

rbc = H∗
rbc(ρ)n−1/(1+(k+2)), then P[ f ∈

Irbc] = 1 − α + O(n−(k+2)/(1+(k+2))), where

H∗
rbc(ρ̄) = argmin

H>0

∣∣H−1q1(Mρ̄ ) + H1+2(k+2)( f (k+2))2

×
(
µK,k+2 − −2ρ̄ µK,kµL,2

)2 q2(Mρ̄ )

+Hk+2 f (k+2) (
µK,k+2 − −2ρ̄ µK,kµL,2

)
q3(Mρ̄ )

∣∣.

We can use this result to give concrete methodological rec-
ommendations. At the end of this section, we discuss the impor-
tant issue of interval length. Construction of the interval Irbc
from Equation (5) requires bandwidths h and b and kernels
K and L. Given these choices, the point estimate, bias cor-
rection, and variance estimators are then readily computable
from data using the formulas above. For the kernels K and
L, we recommend either second-order minimum variance (to
minimize interval length) or MSE-optimal kernels (see, e.g.,
Gasser, Muller, and Mammitzsch 1985, and the supplemental
appendix).

The bandwidth selections are more important in applica-
tions. For the bandwidth h, Corollary 2(a) shows that the MSE-
optimal choice h∗

mse will deliver valid inference, but will be sub-
optimal in general (Corollary 3). From a practical point of view,
the robust bias-corrected interval Irbc(h) is attractive because it
allows for the MSE-optimal bandwidth and kernel, and hence
is based on the MSE-optimal point estimate, while using the
same effective sample for both point estimation and inference.
Interestingly, although Irbc(h∗

mse) is always valid, its coverage
error decays as n−min{4,k+2}/(1+2k) and is thus rate optimal only
for second-order kernels (k = 2), while otherwise being subop-
timal, with a rate that is lower the larger is the order k.

Corollary 3 gives the coverage error optimal bandwidth, h∗
rbc,

which can be implemented using a simple direct plug-in (DPI)
rule: ĥdpi = Ĥdpi n−1/(k+3), where Ĥdpi is a plug-in estimate
of H∗

rbc formed by replacing the unknown f (k+2) with a pilot
estimate (e.g., a consistent nonparametric estimator based on
the appropriate MSE-optimal bandwidth). In the supplement,
we give precise implementation details, as well as an alternative
rule-of-thumb bandwidth selector based on rescaling already
available data-driven MSE-optimal choices.

For the bandwidth b, a simple choice is b = h, or, equiva-
lently, ρ = 1. We show in the supplement that setting ρ = 1 has
good theoretical properties, minimizing interval length of Irbc
or theMSE of f̂ − B̂ f , depending on the conditions imposed. In
our numerical work, we found that ρ = 1 performed well. As a
result, from the practitioner’s point of view, the choice of b (or ρ)
is completely automatic, leaving only one bandwidth to select.

An extensive simulation study, reported in the supplement,
illustrates our findings and explores the numerical performance

of these choices. We find that coverage of Irbc is robust to both
h and ρ and that our data-driven bandwidth selectors work well
in practice, but we note that estimating bandwidths may have
higher-order implications (e.g., Hall and Kang 2001).

Finally, an important issue in applications is whether the
good coverage properties of Irbc come at the expense of
increased interval length. When coverage is asymptotically cor-
rect, Corollaries 1 and 2 show that Irbc can accommodate (and
will optimally employ) a larger bandwidth (i.e., h → 0 more
slowly), and hence Irbc will have shorter average length in large
samples than Ius. Our simulation study (see below and the sup-
plement) gives the same conclusion.

2.5. OtherMethods of Bias Correction

We study a plug-in bias correction method, but there are alter-
natives. In particular, as pointed out by a reviewer, a leading
alternative is the generalized jackknife method by Schucany and
Sommers (1977) (see Cattaneo, Crump, and Jansson (2013) for
an application to kernel-based semiparametric inference and for
related references).Wewill briefly summarize this approach and
show a tight connection to our results, restricting to second-
order kernels and S ≥ 2 only for simplicity.

The generalized jackknife estimator is f̂GJ,R := ( f̂1 −
R f̂2)/(1 − R), where f̂1 and f̂2 are two initial kernel density
estimators, with possibly different bandwidths (h1, h2) and
second-order kernels (K1,K2). From Equation (2), the bias
of f̂GJ,R is (1 − R)−1 f (2)(h21µK1,2 − Rh22µK2,2) + o(h21 + h22),
whence choosing R = (h21µK1,2)/(h22µK2,2) renders the lead-
ing bias term exactly zero. Further, if S ≥ 4, f̂GJ,R has bias
O(h41 + h42); behaving as a point estimator with k = 4. To
connect this approach to ours, observe that with this choice of
R and ρ̃ = h1/h2,

f̂GJ,R = 1
nh1

n∑

i=1

M̃
(
Xi − x
h1

)
,

M̃(u) = K1(u) − ρ̃1+2
{
K2(ρ̃u) − ρ̃−1K1(u)

µK2,2(1 − R)

}
µK1,2,

exactly matching Equation (4); alternatively, write f̂GJ,R = f̂1 −
h21 f̃ (2)µK1,2, where

f̃ (2) = 1
nh1+2

2

n∑

i=1

L̃
(
Xi − x
h2

)
,

L̃(u) = K2(u) − ρ̃−1K1(ρ̃
−1u)

µK2,2(1 − R)
,

is a derivative estimator. Therefore, we can view f̂GJ,R as a spe-
cific kernel M or a specific derivative estimator, and all our
results directly apply to f̂GJ,R; hence our article offers a new
way of conducting inference (new Studentization) for this case
as well. Though we omit the details to conserve space, this is
equally true for local polynomial regression (Section 3).

More generally, our main ideas and generic results apply
to many other bias correction methods. For a second exam-
ple, Singh (1977) also proposed a plug-in bias estimator, but
without using the derivative of a kernel. Our results cover this
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approach as well; see the supplement for further details and ref-
erences. The key, commonmessage in all cases is that to improve
inference one must account for the additional variability intro-
duced by any bias correctionmethod (i.e., to avoid themismatch
present in Tbc).

3. Local Polynomial Estimation and Inference

This section studies local polynomial regression (Ruppert and
Wand 1994; Fan and Gijbels 1996), and has two principal aims.
First, we show that the conclusions from the density case, and
their implications for practice, carry over to odd-degree local
polynomials. Second, we show that with proper fixed-n Studen-
tization, coverage error adapts to boundary points. We focus on
what is novel relative to the density, chiefly variance estimation
and boundary points. For interior points, the implications for
coverage error, bandwidth selection, and interval length are all
analogous to the density case, and we will not retread those con-
clusions.

To be specific, throughout this section we focus on the case
where the smoothness is large relative to the local polynomial
degree p, which is arguably the most relevant case in prac-
tice. The results and discussion in Sections 2.2 and 2.3 carry
over, essentially upon changing k to p+ 1 and ℓ to q − p (or
q − p+ 1 for interior points with q even). Similarly, but with
increased notational burden, the conclusions of Section 2.5 also
remain true. The present results also extend to multivariate data
and derivative estimation.

To begin, we define the regression estimator, its bias, and the
bias correction. Given a random sample {(Yi,Xi) : 1 ≤ i ≤ n},
the local polynomial estimator of m(x) = E[Yi|Xi = x], tem-
porarily making explicit the evaluation point, is

m̂(x) = e′
0β̂p,

β̂p = argmin
b∈Rp+1

n∑

i=1

(Yi − rp(Xi − x)′b)2K
(
Xi − x

h

)
,

where, for an integer p ≥ 1, e0 is the (p+ 1)-vector with
a one in the first position and zeros in the rest, and
rp(u) = (1, u, u2, . . . , up)′. We restrict attention to p odd,
as is standard, though the qualifier may be omitted. We
defineY = (Y1, . . . ,Yn)′,Rp = [rp((X1 − x)/h), . . . , rp((Xn −
x)/h)]′, Wp = diag(h−1K((Xi − x)/h) : i = 1, . . . , n), and
"p = R′

pWpRp/n (here diag(ai : i = 1, . . . , n) denotes the
n × n diagonal matrix constructed using a1, a2, . . . , an). Then,
reverting back to omitting the argument x, the local polynomial
estimator is m̂ = e′

0"
−1
p R′

pWpY/n.
Under regularity conditions below, the conditional bias sat-

isfies

E[m̂|X1, . . . ,Xn] − m = hp+1m(p+1) 1
(p+ 1)!

e′
0"

−1
p #p + oP(hp+1),

(6)
where #p = R′

pWp[((X1 − x)/h)p+1, . . . , ((Xn − x)/h)p+1]′/
n. Here, the quantity e′

0"
−1
p #p/(p+ 1)! is random, unlike in

the density case (see (2)), but it is known and bounded in prob-
ability. Following Fan and Gijbels (1996, p. 116), we will esti-
matem(p+1) in (6) using a second local polynomial regression, of

degree q > p (even or odd), based on a kernel L and bandwidth
b. Thus, rq(u), Rq,Wq, and "q are defined as above, but substi-
tuting q, L, and b in place of p, K, and h, respectively. Denote
by ep+1 the (q + 1)-vector with one in the p+ 2 position, and
zeros in the rest. Then we estimate the bias with

B̂m = hp+1m̂(p+1) 1
(p+ 1)!

e′
0"

−1
p #p,

m̂(p+1) = b−p−1(p+ 1)!e′
p+1"

−1
q R′

qWqY/n.

Exactly as in the density case, B̂m introduces variance that is con-
trolled by ρ and will be captured by robust bias correction.

3.1. Variance Estimation

The Studentizations in the density case were based on fixed-n
expectations, and we will show that retaining this is crucial for
local polynomials. The fixed-n versus asymptotic distinction is
separate from, and more fundamental than, whether we employ
feasible versus infeasible quantities. The advantage of fixed-n
Studentization also goes beyond bias correction.

To begin, we condition on the covariates so that "−1
p is fixed.

Define v(·) = V[Y |X = ·] and$ = diag(v(Xi) : i = 1, . . . , n).
Straightforward calculation gives

σ 2
us = (nh)V[m̂|X1, . . . ,Xn] = h

n
e′
0"

−1
p

(
R′

pWp$WpRp

)
"−1

p e0.
(7)

One can then show that σ 2
us →P v(x) f (x)−1V(K, p), with

V(K, p) a known, constant function of the kernel and polyno-
mial degree. Importantly, both the nonasymptotic form and the
convergence hold in the interior or on the boundary, though
V(K, p) changes.

To first order, one could use σ 2
us or the leading asymptotic

term; all that remains is to make each feasible, requiring esti-
mators of the variance function, and for the asymptotic form,
also the density. These may be difficult to estimate when x is
a boundary point. Concerned by this, Chen and Qin (2002, p.
93) considered feasible and infeasible versions but conclude that
“an increased coverage error near the boundary is still the case
even when we know the values of f (x) and v(x).” Our results
show that this is not true in general: using fixed-n Studentiza-
tion, feasible or infeasible, leads to confidence intervals with the
same coverage error decay rates at interior and boundary points,
thereby retaining the celebrated boundary carpentry property.

For robust bias correction, σ 2
rbc = (nh)V [m̂ − B̂m

|X1, . . . ,Xn] captures the variances of m̂ and m̂(p+1) as well as
their covariance. A fixed-n calculation gives

σ 2
rbc = h

n
e′
0"

−1
p

(
%p,q$ %′

p,q

)
"−1

p e0,

%p,q = R′
pWp − ρ p+2#pe′

p+1"
−1
q R′

qWq. (8)

To make the fixed-n scalings feasible, σ̂ 2
us and σ̂ 2

rbc take
the forms (7) and (8) and replace $ with an appropriate esti-
mator. First, we form v̂(Xi) = (Yi − rp(Xi − x)′β̂p)

2 for σ̂ 2
us

or v̂(Xi) = (Yi − rq(Xi − x)′β̂q)
2 for σ̂ 2

rbc. The latter is bias-
reduced because rp(Xi − x)′βp is a p-term Taylor expansion of
m(Xi) around x, and β̂p estimates βp (similarly with q in place
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of p), and we have q > p. Next, motivated by the fact that least-
square residuals are on average too small, we appeal to the HCk
class of estimators (see MacKinnon (2013) for a review), which
are defined as follows. First, σ̂ 2

us-HC0 uses $̂us = diag(v̂(Xi) :
i = 1, . . . , n). Then, σ̂ 2

us-HCk, k = 1, 2, 3, is obtained by divid-
ing v̂(Xi) by, respectively, (n − 2 tr(Qp) + tr(Q′

pQp))/n, (1 −
Qp,ii), or (1 − Qp,ii)

2, where Qp := R′
p"

−1
p R′

pWp/n is the pro-
jection matrix and Qp,ii its ith diagonal element. The corre-
sponding estimators σ̂ 2

rbc-HCk are the same, but with q in place
of p. For theoretical results, we use HC0 for concreteness and
simplicity, though inspection of the proof shows that simple
modifications allow for the other HCk estimators and rates do
not change. These estimators may perform better for small sam-
ple sizes. Another option is to use a nearest-neighbor-based vari-
ance estimators with a fixed number of neighbors, following the
ideas of Muller and Stadtmuller (1987) and Abadie and Imbens
(2008). Note that none of these estimators assume local or global
homoscedasticity nor rely on new tuning parameters. Details
and simulation results for all these estimators are given in the
supplement, see Section S.II.2.3 and Table S.II.9.

3.2. Higher-Order Expansions of Coverage Error

Recycling notation to emphasize the parallel, we study the fol-
lowing three statistics:

Tus =
√
nh(m̂ − m)

σ̂us
, Tbc =

√
nh(m̂ − B̂m − m)

σ̂us
,

Trbc =
√
nh(m̂ − B̂m − m)

σ̂rbc
,

and their associated confidence intervals Ius, Ibc, and Irbc,
exactly as in Equation (5). Importantly, all present definitions
and results are valid for an evaluation point in the interior and at
the boundary of the support ofXi. The following standard condi-
tions will suffice, augmented with the appropriate Cramér’s con-
dition given in the supplement to conserve space.

Assumption 3 (Data-generating process). {(Y1,X1), . . . , (Yn,Xn)}
is a random sample, where Xi has the absolutely continuous
distribution with Lebesgue density f ,E[Y 8+δ|X] < ∞ for some
δ > 0, and in a neighborhood of x, f and v are continuous and
bounded away from zero, m is S > q + 2 times continuously
differentiable with bounded derivatives, and m(S) is Hölder
continuous with exponent ς .

Assumption 4 (Kernels). The kernels K and L are positive,
bounded, even functions, and have compact support.

We now give our main, generic result for local polynomials,
analogous to Theorem 1. For notation, the polynomials q1, q2,
and q3 and the biases ηus and ηbc, are cumbersome and exact
forms are deferred to the supplement. All that matters is that
the polynomials are known, odd, bounded, and bounded away
from zero and that the biases have the usual convergence rates,
as detailed below.

Theorem 2. Let Assumptions 3, 4, and Cramér’s condition hold
and nh/ log(nh) → ∞.

(a) If ηus log(nh) → 0, then

P[m ∈ Ius] = 1 − α

+
{

1
nh

q1,us + η2
usq2,us + ηus√

nh
q3,us

}
φ(z α

2
) {1 + o(1)}.

(b) If ηbc log(nh) → 0 and ρ → 0, then

P[m ∈ Ibc] = 1 − α

+
{

1
nh

q1,us + η2
bcq2,us + ηbc√

nh
q3,us

}
φ(z α

2
) {1 + o(1)}

+ ρ p+2(*1,bc + ρ p+1*2,bc)φ(z α
2
)z α

2
{1 + o(1)}.

(c) If ηbc log(nh) → 0 and ρ → ρ̄ < ∞, then

P[m ∈ Irbc] = 1 − α +
{

1
nh

q1,rbc + η2
bcq2,rbc + ηbc√

nh
q3,rbc

}

φ(z α
2
) {1 + o(1)}.

This theorem, which covers both interior and boundary
points, establishes that the conclusions found in the density
case carry over to odd-degree local polynomial regression.
(Although we focus on p odd, part (a) is valid in general and
(b) and (c) are valid at the boundary for p even.) In particu-
lar, this shows that robust bias correction is as good as, or bet-
ter than, undersmoothing in terms of coverage error. Traditional
bias correction is again inferior due to the variance and covari-
ance terms ρ p+2(*1,bc + ρ p+1*2,bc). Coverage error optimal
bandwidths can be derived as well, and similar conclusions are
found. Best possible rates are defined for fixed p here, the analog
of k above; see Section 2.2 for further discussion on smoothness.

Before discussing bias correction, one aspect of the
undersmoothing result is worth mentioning. The fact that
Theorem 2 covers both interior and boundary points, without
requiring additional assumptions, is in some sense, expected:
one of the strengths of local polynomial estimation is its adapt-
ability to boundary points. In particular, from Equation (6)
and p odd it follows that ηus ≍

√
nhhp+1 at the interior and

the boundary. Therefore, part (a) shows that the decay rate in
coverage error does not change at the boundary for the standard
confidence interval (but the leading constants will change). This
finding contrasts with the result of Chen and Qin (2002) who
studied the special case p = 1 without bias correction (part (a)
of Theorem 2), and is due entirely to our fixed-n Studentization.

Turning to robust bias correction, we will, in contrast, find
rate differences between the interior and the boundary, no mat-
ter the parity of q. As before, ηbc has two terms, representing
the higher-order bias of the point estimator and the bias of the
bias estimator. The former can be viewed as the bias if m(p+1)

were zero, and since p+ 1 is even, we find that it is of order√
nhhp+3 in the interior but

√
nhhp+2 at the boundary. The bias

of the bias correction depends on both bandwidths h and b,
as well as p and q, in exact analogy to the density case. For q
odd, it is of order hp+1bq−p at all points, whereas for q even this
rate is attained at the boundary, but in the interior the order
increases to hp+1bq+1−p. Collecting these facts: in the interior,
ηbc ≍

√
nhhp+3(1 + ρ−2bq−p−2) for odd q or with bq−p−1 for

q even; at the boundary, ηbc ≍
√
nhhp+2(1 + ρ−1bq−p−1). Fur-

ther details are in the supplement.
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In light of these rates, the same logic of Section 2.2 leads us
to restrict attention to bounded, positive ρ and q = p+ 1, and
thus even. Calonico, Cattaneo, and Titiunik (2014, Remark 7)
pointed out that in the special case of q = p+ 1,K = L, andρ =
1, m̂ − B̂m is identical to a local polynomial estimator of order
q; this is the closest analog toM being a higher-order kernel. If
the point of interest is in the interior, then q = p+ 2 yields the
same rates.

For notational ease, let η̃intbc and η̃bndbc be the leading constants
for the interior and boundary, respectively, so that, for exam-
ple, ηbc =

√
nhhp+3[η̃intbc + o(1)] in the interior (exact expres-

sions are in the supplement).We then have the following, precise
result; the analog of Corollary 2(a).

Corollary 4. Let the conditions of Theorem 2(c) hold, with ρ̄ ∈
(0,∞) and q = p+ 1.

(a) For an interior point,

P[m ∈ Irbc] = 1 − α +
{

1
nh

q1,rbc + nh1+2(p+3)(η̃intbc )2q2,rbc

+ hp+3(η̃intbc )q3,rbc
}
φ(z α

2
) {1 + o(1)}.

(b) For a boundary point,

P[m ∈ Irbc] = 1 − α +
{

1
nh

q1,rbc + nh1+2(p+2)(η̃bndbc )2q2,rbc

+ hp+2(η̃bndbc )q3,rbc
}
φ(z α

2
) {1 + o(1)}.

There are differences in both the rates and constants between
parts (a) and (b) of this result, though most of the changes to
constants are “hidden” notationally by the definitions of η̃bndbc
and the polynomials qk,rbc. Part (a) most closely resembles
Corollary 2 due to the symmetry yielding the corresponding rate
improvement (recall that k in the density case is replaced with
p+ 1 here), and hence all the corresponding conclusions hold
qualitatively for local polynomials.

3.3. Practical Choices and Empirical Consequences

As we did for the density, we now derive bandwidth choices,
and data-driven implementations, to optimize coverage error in
applications.

Corollary 5. Let the conditions of Corollary 4 hold.
(a) For an interior point, if h = h∗

rbc = H∗
rbcn−1/(p+4), then

P[m ∈ Irbc] = 1 − α + O(n−(p+3)/(p+4)), where

H∗
rbc(ρ̄) = argmin

H>0

∣∣H−1q1,rbc + H1+2(p+3)(η̃intbc )2q2,rbc

+Hp+3(η̃intbc )q3,rbc
∣∣.

(b) For a boundary point, if h = h∗
rbc = H∗

rbc(ρ)n−1/(p+3),
then P[m ∈ Irbc] = 1 − α + O(n−(p+2)/(p+3)), where

H∗
rbc(ρ̄) = argmin

H>0

∣∣H−1q1,rbc + H1+2(p+2)(η̃bndbc )2q2,rbc

+Hp+2(η̃bndbc )q3,rbc
∣∣

To implement these results, we first set ρ = 1 and the ker-
nels K and L equal to any desired second-order kernel, typical
choices being triangular, Epanechnikov, and uniform. The vari-
ance estimator σ̂ 2

rbc is defined in Section 3.1, and is fully imple-
mentable, and thus so is Irbc, once the bandwidth h is chosen.

For selecting h at an interior point, the same conclusions from
density estimation apply: (i) coverage of Irbc is quite robust with
respect to h and ρ, (ii) feasible choices for h are easy to construct,
and (iii) an MSE-optimal bandwidth only delivers the best cov-
erage error for p = 1 (i.e., k = 2 in the density case). On the
other hand, for a boundary point, an interesting consequence
of Corollary 5 is that an MSE-optimal bandwidth never delivers
optimal coverage error decay rates, even for local linear regres-
sion: h∗

mse ∝ n−1/(2p+3) ≫ h∗
rbc ∝ n−1/(p+3).

Keeping this in mind, we give a fully data-driven direct
plug-in (DPI) bandwidth selector for both interior and bound-
ary points: ĥintdpi = Ĥint

dpi n−1/(p+4) and ĥbnddpi = Ĥbnd
dpi n−1/(p+3),

where Ĥint
dpi and Ĥbnd

dpi are estimates of (the appropriate)H∗
rbc of

Corollary 5, obtained by estimating unknowns by pilot estima-
tors employing a readily available pilot bandwidth. The complete
steps to form Ĥint

dpi and Ĥbnd
dpi are in the supplement, as is a sec-

ond data-driven bandwidth choice, based on rescaling already-
available MSE-optimal bandwidths. All our methods are avail-
able in R and STATA via the nprobust package, see Calonico,
Cattaneo, and Farrell (2017).

4. Simulation Results

We now report a representative sample of results from a sim-
ulation study to illustrate our findings. We drew 5000 repli-
cated datasets, each being n = 500 iid draws from the model
Yi = m(Xi) + εi, with m(x) = sin(3πx/2)(1 + 18x2[sgn(x) +
1])−1, Xi ∼ U[−1, 1], and εi ∼ N(0, 1). We consider inference
at the five points x ∈ {−2/3,−1/3, 0, 1/3, 2/3}. The function
m(x) and the five evaluation points are plotted in Figure 1; this
function was previously used by Berry, Carroll, and Ruppert
(2002) and Hall and Horowitz (2013). The supplement gives

Figure . True regression model and evaluation points.
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Table . Empirical coverage and average interval length of % confidence intervals.

Empirical coverage Interval length
Evaluation Average
point bandwidth US Locfit BC HH RBC US Locfit HH RBC

−/ . . . . . . . . . .
−/ . . . . . . . . . .
 . . . . . . . . . .
/ . . . . . . . . . .
/ . . . . . . . . . .

NOTES: (i) Column “Average bandwidth” reports simulation average of estimated bandwidths h = ĥdpi ≡ ĥintdpi. Simulation distributions for estimated bandwidths are
reported in the supplement. (ii) US= Undersmoothing, Locfit= R package locfit by Loader (), BC= Bias corrected, HH= Hall and Horowitz (), RBC= Robust
bias corrected.

results for other models, bandwidth selectors and their simu-
lation distributions, alternative variance estimators, and more
detailed studies of coverage and length.

We compared robust bias correction to undersmoothing,
traditional bias correction, the off-the-shelf R package loc-
fit (Loader 2013), and the procedure of Hall and Horowitz
(2013). In all cases, the point estimator is based on local linear
regression with the data-driven bandwidth ĥintdpi, which shares
the rate of ĥmse in this case, and ρ = 1. The locfit pack-
age has a bandwidth selector, but it was ill-behaved and often
gave zero empirical coverage. Hall and Horowitz (2013) did
not give an explicit optimal bandwidth, but did advocate a
feasible ĥmse, following Ruppert, Sheather, and Wand (1995).
To implement their method, we used 500 bootstrap replica-
tions and we set 1 − ξ = 0.9 over a sequence {x1, . . . , xN} =

{−0.9,−0.8, . . . , 0, . . . , 0.8, 0.9} to obtain the final quantile
α̂ξ (α0), and used their proposed standard errors σ̂ 2

HH = κσ̂ 2/ f̂X ,
where σ̂ 2 =

∑n
i=1 ε̂2i /n for ε̂i = ε̃i − ε̄, with ε̃i = Yi − m̂(Xi)

and ε̄ =
∑n

i=1 ε̃i/n.
Table 1 shows empirical coverage and average length at allfive

points for all five methods. Robust bias correction yields accu-
rate coverage throughout the support; performance of the other
methods varies. For x = −2/3, the regression function is nearly
linear, leaving almost no bias, and the other methods work quite
well. In contrast, at x = −1/3 and x = 0, all methods except
robust bias correction suffer from coverage distortions due to
bias. Indeed, Hall and Horowitz (2013, p. 1893) reported that
“[t]he ‘exceptional’ 100ξ%of points that are not covered are typ-
ically close to the locations of peaks and troughs, [which] cause
difficulties because of bias.” Finally, bias is still present, though
less of a problem, for x = 1/3 and x = 2/3, and coverage of the
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Figure . Local polynomial simulation results for x = 0.
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competing procedures improves somewhat. Motivated by the
fact that the data-driven bandwidth selectors may be “too large”
for proper undersmoothing, we studied the common practice of
ad hoc undersmoothing of the MSE-optimal bandwidth choice
ĥmse: the results in Table S.II.8 of the supplement show this to
be no panacea.

To illustrate our findings further, Figure 2(a) and 2(b) com-
pares coverage and length of different inference methods over
a range of bandwidths. Robust bias correction delivers accu-
rate coverage for a wide range of bandwidths, including larger
choices, and thus can yield shorter intervals. For undersmooth-
ing, coverage accuracy requires a delicate choice of bandwidth,
and for correct coverage, a longer interval. Figure 2(c), in color
online, reinforces this point by showing the “average position”
of Ius(h) and Irbc(h) for a range of bandwidths: each bar is
centered at the average bias and is of average length, and then
color-coded by coverage (green indicates good coverage, fad-
ing to red as coverage deteriorates). These results show that
when Ius is short, bias is large and coverage is poor. In contrast,
Irbc has good coverage at larger bandwidths and thus shorter
length.

5. Conclusion

This article has made three distinct, but related points regard-
ing nonparametric inference. First, we showed that bias correc-
tion, when coupledwith a new standard error formula, performs
as well or better than undersmoothing for confidence interval
coverage and length. Further, such intervals are more robust
to bandwidth choice in applications. Second, we showed the-
oretically when the popular empirical practice of using MSE-
optimal bandwidths is justified, and more importantly, when
it is not, and we gave concrete implementation recommenda-
tions for applications. Third, we proved that confidence inter-
vals based on local polynomials do have automatic bound-
ary carpentry, provided proper Studentization is used. These
results are tied together through the themes of higher-order
expansions and the importance of finite sample variance cal-
culations and the key, common message that inference proce-
dures must account for additional variability introduced by bias
correction.

SupplementaryMaterials
The supplemental appendix contains technical and notational details omit-
ted from the main text, proofs of all results, further technical details and
derivations, and additional simulations results and numerical analyses. The
main results are Edgeworth expansions of the distribution functions of the
t statistics Tus, Tbc, and Trbc, for density estimation and local polynomial
regression. Stating and proving these results is the central purpose of this
supplement. The higher-order expansions of confidence interval coverage
probabilities in the main paper follow immediately by evaluating the Edge-
worth expansions at the interval endpoints.
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