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Abstract

We propose principled prediction intervals to quantify the uncertainty of a large class of syn-

thetic control predictions (or estimators) in settings with staggered treatment adoption, offering

precise non-asymptotic coverage probability guarantees. From a methodological perspective,

we provide a detailed discussion of different causal quantities to be predicted, which we call

causal predictands, allowing for multiple treated units with treatment adoption at possibly dif-

ferent points in time. From a theoretical perspective, our uncertainty quantification methods

improve on prior literature by (i) covering a large class of causal predictands in staggered adop-

tion settings, (ii) allowing for synthetic control methods with possibly nonlinear constraints,

(iii) proposing scalable robust conic optimization methods and principled data-driven tuning

parameter selection, and (iv) offering valid uniform inference across post-treatment periods. We

illustrate our methodology with an empirical application studying the effects of economic lib-

eralization in the 1990s on GDP for emerging European countries. Companion general-purpose

software packages are provided in Python, R and Stata.

Keywords: causal inference, synthetic controls, staggered treatment adoption, prediction inter-

vals, non-asymptotic inference.

∗We thank Alberto Abadie, Simon Freyaldenhoven, and Bartolomeo Stellato for many insightful discussions.

Cattaneo and Titiunik gratefully acknowledge financial support from the National Science Foundation (SES-2019432

and SES-2241575), Cattaneo gratefully acknowledges financial support from the National Institute of Health (R01

GM072611-16), and Feng gratefully acknowledges the financial support from the National Natural Science Foundation

of China (NSFC) under grants 72203122 and 72133002.
†Department of Operations Research and Financial Engineering, Princeton University.
‡School of Economics and Management, Tsinghua University.
§Department of Economics, Princeton University.
¶Department of Politics, Princeton University.



Contents

1 Introduction 1

1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Effect of Liberalization on GDP for Emerging European Countries 4

3 Causal Inference Framework and Quantities of Interest 6

3.1 Synthetic Control Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Prediction Intervals 17

4.1 Discussion of Conditions (i)-(iv) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Simultaneous Prediction Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Optimization and Tuning Parameter Selection 27

5.1 Conic Programming Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Defining Constraints in Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Adjustment for Nonlinear Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4 Summary of Algorithmic Implementation . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Empirical Application 34

6.1 Empirical Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Conclusion 41



1 Introduction

The synthetic control method was introduced by Abadie and Gardeazabal (2003), and since then

many extensions and generalizations have been proposed in the literature (see Abadie, 2021, and

references therein). This methodology is now part of the standard toolkit for program evaluation

and treatment effect analysis, offering a complement to traditional difference-in-differences, event

studies, and other panel data approaches for causal inference employing longitudinal aggregated

data with few treated units. Most of the synthetic control literature concentrates on identification,

as well as on prediction or point estimation of treatment effects, under different causal inference

frameworks and algorithmic implementations. In contrast, despite its importance for empirical

work, principled uncertainty quantification of synthetic control predictions or estimators remains

mostly unexplored beyond some specific methods for the canonical single-treatment-unit case.

We develop prediction intervals to quantify the uncertainty of a large class of synthetic control

predictions (or estimators) in settings with staggered treatment adoption, offering precise non-

asymptotic coverage probability guarantees, scalable robust optimization implementations, and

principled tuning parameter selection. Employing a causal inference framework where potential

outcomes are assumed to be random, we propose inferential procedures with non-asymptotic prob-

ability guarantees; such guarantees are valuable because synthetic control applications often have

small sample sizes, limiting the applicability of asymptotic approximations. Conceptually, our pro-

posed prediction intervals capture two sources of uncertainty: one coming from the construction of

the synthetic control weights with pre-treatment data, and the other generated by the irreducible

sampling variability introduced by the post-treatment outcomes. The proposed prediction inter-

vals also take into account potential misspecification error explicitly, and enjoy other robustness

properties due to their non-asymptotic construction.

Our first contribution is methodological in nature due to the complexity added by the staggered

treatment adoption setup, which allows for (but does not require) the existence of multiple treat-

ment units changing from control to treatment status at possibly different points in time. In Section

3, we introduce a general causal inference framework that is specifically tailored to synthetic control

methods and incorporates staggered treatment adoption. Using this framework, we define different

causal quantities to be predicted in the context of synthetic controls, which we refer to as causal
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predictands, and explain how our inferential methods can be used in each case. Furthermore, our

proposed causal framework explicitly allows for misspecification error, multiple covariate features,

and cross-equation re-weighting when constructing the synthetic control weights with pre-treatment

data.

Building on our general causal inference framework, we present two main theoretical contribu-

tions in Section 4. First, we give high-level sufficient conditions leading to valid prediction intervals

with precise non-asymptotic guarantees, allowing for stationary and non-stationary data and for

synthetic control predictions constructed using multiple re-weighted features and nonlinear con-

straints. We also provide easy-to-verify primitive conditions, which cover all common synthetic

control methods in the literature (e.g., Ridge and elastic net regression). Second, we extend our

methods to provide not only pointwise but also joint inference validity across post-treatment time

periods. This result allows for the construction of joint “prediction bands” to complement the

prediction intervals for different predictands at each point in the post-treatment period.

To complement our methodological and theoretical work, Section 5 discusses scalable robust

optimization implementations and principled tuning parameter selection based on our theoretical

results. First, we show how to recast our proposed general synthetic control methods for prediction

and uncertainty quantification as conic optimization programs (Boyd and Vandenberghe, 2004).

This approach gives massive speed improvements for implementation. Second, our proposed meth-

ods explicitly employ the non-asymptotic characterizations of the coverage errors associated with

the proposed prediction intervals to calibrate the underlying tuning parameters for practice. In

particular, we discuss in detail relaxation methods for possibly nonlinear constraints based on our

theoretical development. Section 5.4 gives a summary of our algorithmic implementation.

We illustrate our methods with an empirical application investigating the effect of economic lib-

eralization in the 1990s on GDP for emerging European countries. This empirical work is motivated

by Billmeier and Nannicini (2013) who, also employing synthetic control methods, studied the same

substantive question for countries in other regions of the world. Our main findings suggest that

economic liberalization in the 1990s did not have a positive economic impact for emerging Euro-

pean countries. This finding is in line with prior empirical results. The Supplemental Appendix

provides additional empirical evidence supporting our main findings, including a re-analysis using

alternative synthetic control predictions for different countries and a discussion of specific cases
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where the synthetic control method does not appear to be well-suited for the analysis.

We provide general-purpose software implementing all our results in Python, R, and Stata,

including detailed documentation and additional replication materials. This software is presented

in detail in our companion article Cattaneo, Feng, Palomba and Titiunik (2023), where we discuss

several implementation issues related to numerical optimization and tuning parameter selection.

To complement the illustration, in Section S.4 of the Supplemental Appendix, we provide more

details on how to prepare the data to analyze staggered treatment adoption using synthetic control

methods using our companion software.

1.1 Related Literature

Our paper contributes to two strands of the synthetic control literature. First, it contributes to

the development of prediction/estimation and inference methods for staggered treatment adoption

settings. Putting aside generic linear factor model or matrix completion methods, Ben-Michael,

Feller and Rothstein (2022) and Shaikh and Toulis (2021) appear to be the only prior papers that

have studied staggered treatment adoption for synthetic controls. The first paper focuses on predic-

tion/estimation in settings where the pre-treatment fit is poor, and develops penalization methods

for improving the performance of the canonical synthetic control method. Ben-Michael, Feller

and Rothstein (2022) also suggest employing a bootstrap method for assessing uncertainty, but no

formalization is provided guaranteeing its (asymptotic) validity. Shaikh and Toulis (2021) focus

on uncertainty quantification employing a parametric duration model and propose a permutation-

based inferential method under a symmetry assumption. Our paper complements these prior works

by offering a nonparametric inference method with demonstrable non-asymptotic coverage guaran-

tees and allowing for misspecification in the construction of the synthetic control weights, which

can be applied directly to a large class of synthetic control (possibly penalized) predictions and

causal quantities of interest.

Second, from a general methodological perspective, our proposed inference methods are moti-

vated by Vovk (2012), and are most closely related to prior work by Chernozhukov, Wüthrich and

Zhu (2021a); Chernozhukov, Wüthrich and Zhu (2021b) on conformal prediction intervals and by

Cattaneo, Feng and Titiunik (2021) on non-asymptotic prediction intervals (see Wainwright (2019)

for a modern introduction to non-asymptotic statistical learning). We contribute to this second
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strand of the literature by developing new prediction interval methods. First, we allow for a large

class of causal predictands in staggered adoption settings (prior work covered only the canonical

single treated unit case). Second, we cover a large class of synthetic control predictions with pos-

sibly nonlinear constraints (prior work allowed for predictions with linear constraints). Third, we

develop scalable robust optimization implementations and propose principled data-driven tuning

parameter selection (prior work did not provide guidance on these issues). Fourth, we develop valid

uniform inference across post-treatment periods (absent in prior work).

There are a few other recent proposals in the literature to quantify uncertainty and conduct

inference for synthetic controls. For example, Li (2020) study correctly specified linear factor

models, Masini and Medeiros (2021) study high-dimensional penalization methods, Agarwal, Shah,

Shen and Song (2021) investigate matrix completion methods, Shen, Ding, Sekhon and Yu (2022)

explore panel data methods, and Shi, Miao, Hu and Tchetgen (2023) develop inference methods

using a proximal causal inference framework. All these methods rely on asymptotic approximations,

in most cases employing standard Gaussian critical values that assume away misspecification errors

and other small sample issues. Our work complements these contributions by providing prediction

intervals with non-asymptotic coverage guarantees. Finally, all the inferential methods mentioned

so far contrast with the original method proposed by Abadie, Diamond and Hainmueller (2010),

which relies on design-based permutation of treatment assignment assuming that the potential

outcomes are non-random.

2 The Effect of Liberalization on GDP for Emerging European

Countries

During the second half of the twentieth century, a considerable number of countries all over the

world launched programs of (external) economic liberalization, booming from 22% in 1960 to 73%

in the early 2000s (Wacziarg and Welch, 2008). In the last thirty years, political scientists and

economists have investigated the social and economic consequences of such liberalization programs,

often reaching conflicting conclusions (see, e.g., Levine and Renelt, 1992; Sachs, Warner, Åslund

and Fischer, 1995; DeJong and Ripoll, 2006).

The impact of liberalization policies on economic welfare has been traditionally investigated
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with cross-country analyses (e.g. Sachs, Warner, Åslund and Fischer, 1995) and individual case

studies (e.g. Bhagwati and Srinivasan, 2001). More recently, scholars have turned to synthetic

control methods in the hope of employing a causal inference methodology that allows for the

presence of time-varying unobservable confounders. Employing the synthetic control framework

originally developed in Abadie and Gardeazabal (2003), Billmeier and Nannicini (2013) analyzed

the effects of liberalization in four continents: Africa, Asia, North America, and South America.

They used a pre-existing dataset of economic variables (previously used in Giavazzi and Tabellini,

2005) which includes 180 countries, covers the period 1963–2000, and contains an indicator for

economic liberalization originally defined in Sachs, Warner, Åslund and Fischer (1995) and updated

in Wacziarg and Welch (2008) (hereafter, the Sachs-Warner indicator). More details on the data

and the definition of economic liberalization can be found in the Supplemental Appendix Section

S.4.

The main finding of Billmeier and Nannicini (2013) is that economic liberalization—as measured

by the Sachs-Warner indicator—has a non-negative effect on GDP per capita. Moreover, the

authors document the presence of substantial heterogeneity in the effects depending on the period

of time in which the liberalization took place. On the one hand, the predicted effect on real income

per capita is positive in those countries that embarked on programs of economic liberalization

before the 1980s. On the other hand, in the MENA (Middle East and North Africa) region and in

sub-Saharian Africa, where many liberalization episodes occurred after 1985, the magnitude of the

predicted effect becomes either statistically insignificant or economically irrelevant.

Our work builds on Billmeier and Nannicini (2013) in three ways. First, we form prediction

intervals around causal predictions using our new methodology. Second, rather than constructing

a synthetic control independently for each treated unit, we leverage both the presence of multiple

treated units and the staggered nature of treatment adoption to jointly form the synthetic con-

trols. Third, by borrowing donors from other continents, we also analyze the impact of economic

liberalization events in Europe (see Table 1 below).

As shown in Table 1, we study seven liberalization episodes that occurred in Europe out of the

nine available ones. In particular, North Macedonia is not included in the final analysis due to

the lack of other variables in the dataset besides GDP per capita before 1994, whereas Slovenia is
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Table 1: Economic liberalization episodes in the Billmeier and Nannicini (2013) dataset.

Country Event Years Years Analyzed in
Name Date Closed Liberalized this work

Albania 1992 29 9 ✓
Bulgaria 1991 28 10 ✓
Czech Republic 1991 28 10 ✓
Hungary 1990 27 11 ✓
North Macedonia 1994 31 7 ✗
Poland 1990 27 11 ✓
Romania 1992 29 9 ✓
Slovak Republic 1991 28 10 ✓
Slovenia 1991 28 10 ✗

Notes: a comprehensive description of the events that led the Sachs-Warner indicator to switch on for these countries
is contained in the Supplemental Appendix Section S.4 together with the full set of donors.

excluded in virtue of the poor pre-treatment fit yielded by the synthetic controls for such country.1

We discover that the real income per capita trajectory during the 10 years following the liberal-

ization is lower than it would have been in the absence of the liberalization in all countries we

analyzed. Similarly, the average post-treatment effect is negative for all the treated units and so is

the average post-treatment effect on the treated (see Section 3 for a precise definitions). However,

when individual and simultaneous prediction intervals are taken into account, the trajectory of the

synthetic control becomes indistinguishable from the realized time series for real income with high

probability. Only the average treatment effect on the treated differs from zero with high probability.

Results in other continents—fully presented in the Supplemental Appendix Section S.6—confirm

in magnitude the ones found in Billmeier and Nannicini (2013), whenever it has been possible to

compare them. However, the data do not allow us to draw the conclusion that liberalization events

changed the trajectory of GDP per capita in either a favorable or negative way.

3 Causal Inference Framework and Quantities of Interest

We consider the synthetic control (SC) framework with a fixed number of units that may adopt

treatment at different times. Specifically, a researcher observes N units for T time periods. Units

are indexed by i = 1, . . . , N , and time periods are indexed by t = 1, . . . , T . Let Ti represent the

1As detailed in Supplemental Appendix Section S.4 and Supplemental Appendix Section S.8, we still use Slovenia
as a donor whenever possible. Supplemental Appendix Section S.8 also presents the results for North Macedonia and
Slovenia.
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time when unit i receives the treatment, with Ti = ∞ denoting that unit i is never treated (at

least during the observed T time periods). Each unit i remains untreated in t = 1, . . . , Ti − 1 and

remains treated since Ti. We assume that there is a (non-empty) set of units that are never treated,

i.e., N0 :=
∑N

i=1 1(Ti =∞) > 0, and let N1 := N −N0 be the number of units that are eventually

treated by time period T . Without loss of generality, assume units are ordered in the adoption

time: T1 ≤ T2 ≤ · · · ≤ TN1 . In our empirical application, the treatment of interest is economic

liberalization, the adoption time of which is heterogeneous across different countries.

The staggered adoption problem can be analyzed in a multi-valued treatment effects framework.

Let Yit(s) denote the potential outcome of unit i in period t that would be observed if unit i had

adopted the treatment in period s, for s = 1, . . . , T,∞, and we set Yit(s) = Yit(∞) for t < s. Implic-

itly, these simplifications impose two standard assumptions: no spillovers (the potential outcomes

of unit i depend only on i’s adoption time) and no anticipation (a unit’s potential outcomes prior

to the treatment are equal to the outcomes it would have had if it had never been treated). Then,

the observed outcome can be written as

Yit = Yit(∞)1(t < Ti) + Yit(Ti)1(t ≥ Ti).

A large set of causal predictands can be defined in this context. In particular, for k ≥ 0, let τik

be the (individual) treatment effect of unit i in Ti + k (k periods after treatment adoption):

τik := Yi(Ti+k)(Ti)− Yi(Ti+k)(∞).

This is the treatment effect of interest in the classical synthetic control analysis with only one

treated unit. When multiple treated units or multiple post-treatment periods are available, a

researcher might be interested in a variety of other causal predictands. The following are some

typical examples:

(i) Average post-treatment effect on unit i:

τi· :=
1

T − Ti + 1

T−Ti∑
k=0

τik .
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(ii) Average treatment effect on units treated at time s0, k periods after treatment adoption:

τ·k,s0 :=
1

|{i : Ti = s0}|
∑

i:Ti=s0

τik ,

where |{i : Ti = s0}| denotes the number of units that get treated at s0.

(iii) Average treatment effect on the treated, k periods after treatment adoption:

τ·k :=
1

N1

N1∑
i=1

τik .

Since the observation ends at time T , the number of treated units included in the definition of the

average treatment effect τ·k could vary across k. To avoid this complication, we assume that all

treated units are observed at least K periods after the treatment for some K ≥ 1, i.e., TN1 ≤ T−K,

and attention is restricted to τ·k for k ≤ K only.

The potential outcomes, treatment adoption times, and individual treatment effects are viewed

as random quantities in general. We assume that there is only a fixed (possibly small) number

of treated units and time periods, which is often the case in synthetic control applications. Thus,

the various average treatment effects defined above are also random quantities in general, but we

continue to refer to them as “treatment effects” to be consistent with analogous quantities defined

in the literature (e.g., assuming a fixed, non-random potential outcomes framework). In classical

large-sample-based causal analysis, target parameters are often probability or ergodic (non-random)

limits of the average effects above as N1 → ∞, T − Ti → ∞, and/or K → ∞; our results are also

valid in such settings. Nevertheless, in this paper we develop statistical inference methods based on

prediction intervals that describe a region where a new realization of a (random) causal predictand

of interest is likely to be observed, rather than usual confidence intervals giving a region in the

parameter space for a non-random parameter of interest.

The canonical synthetic control analysis with one single treated unit can be viewed as a special

case of the more general setup described above. Specifically, suppose that unit 1 is the only treated

unit who receives the treatment at T1, and all other units are never treated, i.e., Ti = ∞ for all
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i ≥ 2. Then, the observed outcome is

Yit =


Yit(∞) i = 2, . . . , N

Y1t(∞) i = 1 and t = 1, . . . , T1 − 1

Y1t(T1) i = 1 and t = T1, . . . , T

.

The target causal predictand in this canonical case is usually the individual treatment effect on the

treated, i.e., τ1k defined previously.

3.1 Synthetic Control Method

Consider the case where multiple treated units are available, and one would like to find a vector of

SC weights possibly different for each treated unit. From now on, we use a superscript i = 1, . . . , N1

in brackets to index the treated units that enter the construction of the desired causal predictand,

and a subscript l = 1, . . . ,M to denote different features of the treated on which one would like to

match.

Let A
[i]
l = (a

[i]
1,l, · · · , a

[i]
T0,l

)′ ∈ RT0 be the lth feature of the treated unit i measured in T0

(user-specified) pre-treatment periods. For each feature l and each treated unit i, there exist

J + K variables that are used to predict or match the T0-dimensional vector A
[i]
l . These J + K

variables are separated into two groups denoted by B
[i]
l = (B

[i]
1,l,B

[i]
2,l, · · · ,B

[i]
J,l) ∈ RT0×J and

C
[i]
l = (C

[i]
1,l, · · · ,C

[i]
K,l) ∈ RT0×K , respectively. More precisely, for each j = 1, . . . , J , B

[i]
j,l =

(b
[i]
j1,l, · · · , b

[i]
jT0,l

)′ corresponds to the lth feature of the jth unit in the donor pool measured in T0

pre-treatment periods, and for each k = 1, . . . ,K, C
[i]
k,l = (c

[i]
k1,l, · · · , c

[i]
kT0,l

)′ is another vector of

control variables used to predict A
[i]
l over the same pre-intervention time span. Stacking the M

equations (corresponding to M features) for each treated unit, we define

A[i]︸︷︷︸
T0·M×1

=

A
[i]
1
...

A
[i]
M

 , B[i]︸︷︷︸
T0·M×J

=

B
[i]
1
...

B
[i]
M

 , C[i]︸︷︷︸
T0·M×K·M

=


C

[i]
1 0 · · · 0

0 C
[i]
2 · · · 0

...
...

. . .
...

0 0 · · · C
[i]
M

 .

In our empirical application, A[i] contains the (log) GDP per capita and the percentage of complete

secondary schooling in population (M = 2) of a treated economy i (that has ever experienced
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liberalization) during the pre-liberalization period, and B[i] contains the same two features of the

donor economies used to match A[i]. For each feature l = 1, 2, C
[i]
l contains an intercept and a

linear time trend (K = 2).

The goal of the synthetic control method is to search for a vector of weightsw = (w[1]′, · · · ,w[N1]′)′ ∈

W ⊆ RJN1 which is common across theM features and a vector of coefficients r = (r[1]′, · · · , r[N1]′)′ ∈

R ⊆ RKMN1 , such that the linear combination of B[i] and C[i] matches A[i] as closely as possible,

for all 1 ≤ i ≤ N1. The feasibility setsW and R capture the restrictions imposed. Typical examples

include simplex-type, lasso-type and ridge-type constraints (for further details, see Cattaneo, Feng,

Palomba and Titiunik, 2023).

Such SC weights are typically obtained via the following optimization problem: for some (T0 ·

M ·N1)× (T0 ·M ·N1) symmetric weighting matrix V,

β̂ := (ŵ′, r̂′)′ ∈ argmin
w∈W, r∈R

(A−Bw −Cr)′V(A−Bw −Cr) (3.1)

where

A︸︷︷︸
T0·M·N1×1

=

 A[1]

...

A[N1]

 , B︸︷︷︸
T0·M·N1×J·N1

=


B[1] 0 · · · 0

0 B[2] · · · 0
...

...
. . .

...

0 0 · · · B[N1]

 , C︸︷︷︸
T0·M·N1×K·M·N1

=


C[1] 0 · · · 0

0 C[2] · · · 0
...

...
. . .

...

0 0 · · · C[N1]

 .

Accordingly, we write ŵ = (ŵ[1]′, · · · , ŵ[N1]′)′ where each ŵ[i] = (ŵ
[i]
1 , · · · , ŵ[i]

J )′ is the SC weights

on J control units that are used to predict the counterfactual of the treated unit i. Similarly, write

r̂ = (r̂[1]′, · · · , r̂[N1]′)′ and β̂ = (β̂[1]′, · · · , β̂[N1]′)′.

Then, the predicted counterfactual outcome of each treated unit is given by

Ŷit(∞) := x
[i]′
t ŵ[i] + g

[i]′
t r̂[i] = p

[i]′
t β̂[i], p

[i]
t = (x

[i]′
t , g

[i]′
t )′, i = 1, · · · , N1, t > Ti,

where x
[i]
t is a vector of predictors of the control units measured in time t used to predict the

counterfactual of the treated unit i, and g
[i]
t is a vector of predictors that correspond to the ad-

ditional control variables specified in C[i]. In our empirical application, x
[i]
t is the post-treatment

(log) GDP per capita of donor economies, and g
[i]
t includes a constant, a linear time trend and

two zeros so that g
[i]
t is conformable with r̂[i]. In general, however, variables included in x

[i]
t and
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g
[i]
t need not be the same as those in B[i] and C[i]. For convenience of later exposition, we write

pt = (p
[1]′
t , · · · ,p[N1]′

t )′.

Any causal predictand τ discussed before can be written as the difference between an observed

outcome (possibly a linear combination of outcomes of a few treated units or in different periods)

and the corresponding counterfactual outcome. To construct a prediction τ̂ of τ , one only needs to

substitute a “SC prediction” for the unobserved counterfactual:

SC prediction := p′
τ β̂,

where the predictor vector pτ needs to be defined in context. More details are provided in the

following examples.

Example 3.1 (Individual Treatment Effect, τik). Suppose that the individual treatment effect τik

of the treated unit i with Ti <∞ is of interest for some 0 ≤ k ≤ T −Ti. Let the set of pre-treatment

periods be {t : t ≤ Ti− 1}. The donor pool consists of units that receive treatment later than Ti+k,

i.e., {j : Tj > Ti + k}. The SC weights are constructed using the data of the treated unit i and

the control units in the pre-treatment period. Given the prediction of the counterfactual outcome

Ŷi(Ti+k), the predicted treatment effect is

τ̂ik := Yi(Ti+k) − Ŷi(Ti+k)(∞) = Yi(Ti+k) − p′
τik

β̂.

The predictor vector pτik in this case is given by

pτik := (0′J+KM , · · · ,0′J+KM︸ ︷︷ ︸
(i−1) vectors

, p
[i]′
Ti+k, 0

′
J+KM , · · · ,0′J+KM︸ ︷︷ ︸

(N1−i) vectors

)′.

where 0J+KM is a (J +KM)-vector of zeros. See Figure 1 for a graphical representation of τ̂ik.

Example 3.2 (Average Post-Treatment Effect, τi·). Suppose that the quantity of interest is the

treatment effect on the treated unit i averaged across all the post-treatment periods, i.e., τi· defined

previously. Let the set of pre-treatment periods be {t : t ≤ Ti − 1}, and take the set of all units

that are never treated as the donor pool, i.e., {j : Tj = ∞}. The SC weights in this scenario can

be constructed in the same way as in the case of individual treatment effects. The prediction of the
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Figure 1: Graphical illustration of the individual treatment effect, τ̂ik.

Notes: The black line displays the times series of the treated unit’s outcome, whereas the blurred gray lines portray
the same variable for the donor units. The blue line is the synthetic control constructed out of the donor units using
a simplex-type constraint. The pink vertical line represents the quantity τ̂ik described in Example 3.1, where k is set
to 5.

average post-treatment effect is given by

τ̂i· :=
1

T − Ti + 1

T∑
t=Ti

(
Yit − Ŷit(∞)

)
=

1

T − Ti + 1

T∑
t=Ti

Yit − p′
τi·β̂,

where the predictor vector in this case is given by

pτi· :=
(
0′J+KM , · · · ,0′J+KM︸ ︷︷ ︸

(i−1) vectors

,
1

T − Ti + 1

∑
t≥Ti

p
[i]′
t , 0′J+KM , · · · ,0′J+KM︸ ︷︷ ︸

(N1−i) vectors

)′
.

See Figure 2 for a graphical representation of τ̂i·.

Example 3.3 (Average Treatment Effect on the Treated at s0 after k Periods, τ·k,s0). Suppose that

the causal predictand of interest is the average treatment effect for units that adopt the treatment at

time s0, k periods after treatment adoption, i.e., τ·k,s0 defined above. Let the set of pre-treatment

periods be {t : t ≤ s0− 1}, and take the set of units that adopt the treatment later than s0 + k, i.e.,

12



Figure 2: Graphical illustration of the average post-treatment effect, τ̂i·.

Notes: The black line displays the times series of the treated unit’s outcome, whereas the blurred gray lines portray
the same variable for the donor units. The blue line is the synthetic control constructed out of the donor units using
a simplex-type constraint. The dashed lines represent the post-treatment average of the treated time series (black)
and the synthetic control time series (blue). The pink vertical line represents the quantity τ̂i· described in Example
3.2.

{j : Tj > s0 + k}, as the donor pool. We have two different strategies to conduct the SC analysis:

• Implement the procedure described above, which allows for different SC weights on different

treated units. Suppose {i : Ti = s0} = {i1, · · · , ins0
}. Then, the predicted effect is given by

τ̂·k,s0 :=
1

ns0

∑
i:Ti=s0

(
Yi(s0+k) − Ŷi(s0+k)(∞)

)
=

1

ns0

∑
i:Ti=s0

Yi(s0+k) − p′
τ·k,s0

β̂,

where the predictor vector in this case is given by

pτ·k,s0
:=

(
0′J+KM , · · · ,0′J+KM︸ ︷︷ ︸

(i1−1) vectors

,
1

ns0

p
[i1]′
s0+k, · · · ,

1

ns0

p
[ins0

]′
s0+k , 0′J+KM , · · · ,0′J+KM︸ ︷︷ ︸

(N1−ins0
) vectors

)′
.

• Aggregate different treated units into one single unit, denoted by “ave”, whose potential out-

13



comes are given by the average of all units treated at time s0:

Y ave
t (s; s0) :=

1

ns0

∑
i:Ti=s0

Yit(s), t = 1, . . . , T, s = 1, . . . , T,∞.

More precisely, Y ave
t (s; s0) is the potential outcome of the aggregate unit ave in period t that

would be observed if it had adopted the treatment in period s, while ave actually adopted the

treatment in period s0. Other features of this aggregate unit can be constructed similarly as

the average of multiple units treated at s0. The SC weights can be obtained using the data of

the aggregate unit ave and control units in the donor pool from pre-treatment period. Then,

the SC analysis proceeds exactly the same way as in Example 3.1. See Figure 3 for a graphical

representation of τ̂·k,s0.

Figure 3: Graphical illustration of the average treatment effect on the treated at s0 after k periods, τ̂·k,s0 .

Notes: The black lines display the times series of the treated units’ outcome, whereas the blurred gray lines portray
the same variable for the donor units. The blue lines are the synthetic controls constructed out of the donor units
using a simplex-type constraint. The largest black triangle represents the average of the treated units’ outcomes at
s0 + k, with s0 set to 2015 and k set to 5. Similarly, the largest blue circle is the average of the synthetic controls
at s0 + k. The pink vertical line represents the quantity τ̂·k,s0 described in Example 3.3. ns0 denotes the number of
treated units that received the treatment at time s0.
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Example 3.4 (Average Treatment Effect on all Treated after k Periods, τ·k). Suppose that the

quantity of interest is the average treatment effect for all treated units k periods after treatment

adoption, i.e., τ·k defined above. Let the set of pre-treatment periods be {t : t ≤ T1 − 1} and the

donor pool be {j : Tj =∞}. Then, the predicted effect is given by

τ̂·k :=
1

N1

N1∑
i=1

(
Yi(Ti+k) − Ŷi(Ti+k)

)
=

1

N1

N1∑
i=1

Yit − p′
τ·k

β̂,

where the predictor vector in this case is given by

pτ·k :=
( 1

N1
p
[1]′
T1+k, · · · ,

1

N1
p
[N1]′
TN1

+k

)′
.

See Figure 4 for a graphical representation of τ̂·k.

Figure 4: Graphical illustration of the average treatment effect on all treated after k periods τ̂·k.

Notes: The black lines display the times series of the treated units’ outcome, whereas the blurred gray lines portray
the same variable for the donor units. The blue lines are the synthetic controls constructed out of the donor units
using a simplex-type constraint. The largest black triangle represents the average of the treated units’ outcomes k
periods after treatment, with k set to 5. Similarly, the largest blue circle is the average of the synthetic controls k
periods after treatment. The pink vertical line represents the quantity τ̂·k,s0 described in Example 3.4.

As pointed out by Ben-Michael, Feller and Rothstein (2022), with multiple treated units, the SC
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weights could be constructed in two ways: (i) optimizing the separate fit for each treated unit; (ii)

optimizing the pooled fit for the average of the treated units. These ideas can be accommodated

by choosing a proper weighting matrix V. For example, taking V = IT0MN1 yields

β̂ = argmin
w∈W,r∈R

N1∑
i=1

M∑
l=1

T0∑
t=1

(
a
[i]
t,l − b

[i]′
t,l w

[i]
l − c

[i]′
t,l r

[i]
l

)2
,

where B
[i]
l := (b

[i]
1,l, · · · ,b

[i]
T0,l

)′ is the lth feature of the J control units in the donor pool, and

C
[i]
l := (c

[i]
1,l, · · · , c

[i]
T0,l

)′ is the additional K variables used to predict A
[i]
l . The objective above is

equivalent to minimizing the sum of squared errors of the pre-treatment fit for each treated unit

and thus is termed “separate fit”.

By contrast, consider the following weighting matrix:

V =
1

N2
1

1N11
′
N1
⊗ IT0M

where ⊗ denotes the Kronecker product operator. Then,

β̂ = argmin
w∈W,r∈R

M∑
l=1

T0∑
t=1

[
1

N1

N1∑
i=1

(
a
[i]
t,l − b

[i]′
t,l w

[i] − c
[i]′
t,l r

[i]
l

)]2
.

In this case, the goal is to minimize the sum of squared averaged errors across all treated units,

which is usually termed “pooled fit”.

To simplify the exposition, we assume that the number of pre-treatment periods T0 and the

number of control units J do not vary when we match on features of different treated units. This

accommodates the common practice of using data in all periods before the first unit is treated

(i.e., T0 = T1 − 1) and taking all units that are never treated as donors (i.e., J = N0). However,

our setup is general enough to allow for more flexible choices of pre-treatment periods and donor

pools that are heterogeneous across different treated units, at the cost of additional cumbersome

notation. Selecting the appropriate donor pool for each treatment unit in practice can be done

taking into account the causal predictand of interest.
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4 Prediction Intervals

Our goal is to use our generic synthetic control framework to construct prediction intervals for the

various treatment effects defined in Section 3. Suppose that A, B, and C introduced previously

are random quantities defined on a probability space (Ω,F ,P), and H ⊆ F is a sub-σ-field. For

some α, π ∈ (0, 1), we say a random interval I is an (α, π)-valid H -conditional prediction interval

for a causal predictand τ if

P
{
P
[
τ ∈ I

∣∣H ]
≥ 1− α

}
≥ 1− π, (4.1)

where τ can be thought of as any of the treatment effects defined in Section 3.

If H is the trivial σ-field over Ω, then I reduces to an unconditional prediction interval for τ . In

the general case, the prediction interval I is H -conditionally (α, π)-valid: the conditional coverage

probability of I for τ is at least (1− α), which holds with probability over H at least (1− π). In

practice, (1 − α) is a desired coverage level chosen by users, say 95%, and π is a “small” number

that depends on the sample size and typically goes to zero in some asymptotic sense. In this paper,

all results are valid for all T0 large enough, with the associated probability loss π characterized

precisely. Thus, we say that the conditional coverage of the prediction interval I is at least (1−α)

with high probability, or that the conditional prediction interval offers finite-sample probability

guarantees. Our results imply that π → 0 as T0 → ∞, but no limits or asymptotic arguments are

used in this paper.

Generally, the choice of the conditioning set H determines the uncertainty that would not be

taken into account by the prediction intervals. We consider prediction intervals conditional on

all control units as well as on the other predictors used to construct the SC prediction. That is,

H = {B,C,pτ}. Therefore, the uncertainty to be characterized arises from the treated units only.

Define the target quantity of the SC weights (conditional on H ) that is analogous to (3.1):

β0 := (w′
0, r

′
0)

′ = argmin
w∈W, r∈R

E
[
(A−Bw −Cr)′V(A−Bw −Cr)

∣∣∣H ]
. (4.2)

Thus, we can write

A = Bw0 +Cr0 +U, w0 ∈ W, r0 ∈ R, (4.3)

17



where U = (u[1]′, · · · ,u[N1]′)′ ∈ RT0MN1 is the corresponding pseudo-true residual relative to the

σ-field H . Each u[i] = (u
[i]
1,1, · · · , u

[i]
T0,1

, · · · , u[i]1,M , · · · , u[i]T0,M
)′ ∈ RT0M is the pseudo-true residual

from theM equations (corresponding to theM features) of the treated unit i. Given the pseudo-true

value β0 and a desired causal predictand τ , we have the following decomposition of the predicted

effect τ̂ :

τ̂ − τ ≡ −p′
τ (β̂ − β0) + eτ ,

where p′
τ (β̂ − β0) captures the in-sample uncertainty from the SC weights construction using pre-

treatment information, and eτ captures the out-of-sample uncertainty from the stochastic error in

one or a few post-treatment periods. Notice that in-sample uncertainty quantification is necessary

in this scenario since the conditioning set H ⊇ {B,C}, but H ̸∋ A.

To construct prediction intervals for a causal predictand τ , we propose to find constants M1,L,

M1,U, M2,L and M2,U, possibly depending on α1, α2, π1, π2 ∈ (0, 1) such that

P
{
P
[
M1,L ≤ p′

τ (β̂ − β0) ≤M1,U

∣∣ H
]
≥ 1− α1

}
≥ 1− π1, and

P
{
P
[
M2,L ≤ eτ ≤M2,U

∣∣ H
]
≥ 1− α2

}
≥ 1− π2,

which suffices to guarantee

P
{
P
[
τ̂ +M1,L −M2,U ≤ τ ≤ τ̂ +M1,U −M2,L

∣∣H ]
≥ 1− α1 − α2

}
≥ 1− π1 − π2,

that is, the prediction interval I = [τ̂ + M1,L − M2,U, τ̂ + M1,U − M2,L] achieves (1 − α1 − α2)

H -conditional coverage probability, which holds with probability at least 1− π1 − π2 over H , as

defined in (4.1).

In-sample uncertainty . We propose a simulation-based strategy to bound the in-sample error

p′
τ (β0 − β̂). Let Z = (B,C) and d = (J +KM)N1. Using (3.1) and (4.2), we obtain the following

optimization problem characterizing the centered synthetic control weights predictor:

β̂ − β0 = argmin
β−β0∈∆

{
(β − β0)

′Q̂(β − β0)− 2γ̂ ′(β − β0)
}
,

where Q̂ = Z′VZ, γ̂ ′ = U′VZ, and ∆ = {β − β0 ∈ Rd : β ∈ W × R}. We assume that the

18



constraint sets W and R are convex throughout.

Let γ := E[γ̂|H ], which is not necessarily equal to 0. By optimality of β̂ and the convexity ofW

andR, it can be shown that β̂ has to satisfy β̂−β0 ∈ ∆ and (β̂−β0)
′Q̂(β̂−β0)−2(γ̂−γ)′(β̂−β0) ≤

0. Thus, the minimum and the maximum of p′
τ (β−β0) over the set of β satisfying these restrictions

are lower and upper bounds on the in-sample error p′
τ (β̂−β0). Conditional on H , the uncertainty of

these (stochastic) bounds comes from γ̂ only. We can employ a normal distributional approximation

of γ̂ and set M1,L = cL(α1/2) and M1,U = cU(1− α1/2) where

cL(α1/2) := (α1/2)-quantile of inf{p′
τδ : δ ∈MG} and

cU(1− α1/2) := (1− α1/2)-quantile of sup{p′
τδ : δ ∈MG}

conditional on H , withMG = {δ ∈ ∆ : δ′Q̂δ − 2G′δ ≤ 0}, G|H ∼ N(0,Σ) and Σ = V[γ̂|H ].

However, cL(α1/2) and cU(1−α1/2) cannot be directly used because they still rely on the infeasible

normalized constraint set ∆ and the unknown covariance matrix Σ. We thus propose a feasible

simulation-based strategy allowing for possibly nonlinear constraints, where we replace unknown

quantities by plug-in approximations thereof.

First, we need a feasible constraint set ∆⋆ used in simulation. Specifically, define the distance

between a point a ∈ Rd and a set Λ ⊆ Rd by dist(a,Λ) = infλ∈Λ ∥a − λ∥, where ∥ · ∥ is a generic

ℓp vector norm on Rd with p ≥ 1 (e.g., Euclidean norm or ℓ1 norm). Intuitively, we require that

every point in the original infeasible constraint set ∆ be close to the feasible constraint set ∆⋆

in simulation. Consequently, searching for an upper (or lower) bound within the infeasible set ∆

can be replaced with doing so within the feasible set ∆⋆. This requirement will be formalized as

condition (iii) in Theorem 1 below. A proposed strategy for constructing ∆⋆ is described in (4.6),

and more implementation details are discussed in Section 5.2.

Second, we need an estimator Σ̂ of the covariance matrix Σ. A variety of well-established

heteroskedasticity/serial-correlation-robust estimators can be used. We require Σ̂ to be a “good”

approximation ofΣ in the sense of condition (iv) in Theorem 1 below. This allows us to approximate

the infeasible normal distribution N(0,Σ) by N(0, Σ̂), which can be simulated using the data.

Once ∆⋆ and Σ̂ are available, we can simply draw random vectors from N(0, Σ̂) conditional on
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the data, and then set

M1,L = c⋆L(α1/2) and M1,U = c⋆U(1− α1/2) (4.4)

where

c⋆L(α1/2) := (α1/2)-quantile of inf{p′
τδ : δ ∈M⋆

G} and

c⋆U(1− α1/2) := (1− α1/2)-quantile of sup{p′
τδ : δ ∈M⋆

G}

conditional on the data,M⋆
G = {δ ∈ ∆⋆ : δ′Q̂δ − 2(G⋆)′δ ≤ 0}, and G⋆|Data ∼ N(0, Σ̂).

For example, our main empirical results in Section 6 employ an L1-L2 constrained synthetic

control prediction (non-linear constraints) and carefully chosen plug-in approximations (∆⋆, Σ̂)

(described precisely below), which exhibits good performance in finite samples. Validity of the

resulting non-asymptotic prediction intervals is new to the literature because prior results covered

only linear constraints (see Theorem 1) and, in particular, did not provide a principled ∆⋆ (see

Lemma 1).

Out-of-sample uncertainty . To bound the out-of-sample error eτ , we propose an easy-to-

implement approach based on non-asymptotic concentration inequalities. Specifically, assume that

eτ − E[eτ |H ] is conditional-on-H sub-Gaussian with parameter σH . Then for any ε > 0,

P
(
|eτ − E[eτ |H ]| ≥ ε

∣∣∣H )
≤ 2 exp

(
− ε2

2σ2
H

)
.

Consequently, we set

M2,L = E[eτ |H ]−
√
2σ2

H log(2/α2) and M2,U = E[eτ |H ] +
√
2σ2

H log(2/α2), (4.5)

which yields a prediction interval [M2,L,M2,U] that covers e
[i]
Ti+k with at least (1 − α2) conditional

coverage probability. We emphasize that the sub-Gaussianity assumption is one of many possi-

bilities. The above strategy could applied using other concentration inequalities requiring weaker

moment conditions, though the resulting prediction intervals may be wider.

As discussed in the examples below, the generic out-of-sample error eτ associated with some

treatment effect τ is typically a linear combination of individual error terms e
[i]
t = Yit(∞)− p

[i]′
t β0
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in the post-treatment period, and the sub-Gaussianity of eτ is implied by assuming e
[i]
t is sub-

Gaussian. In practice, one could first construct pre-treatment residuals ê
[i]
t = Yit(∞) − p

[i]′
t β̂[i],

t = 1, · · · , T0, and estimate the conditional moments of e
[i]
t employing various parametric or non-

parametric regression of ê
[i]
t . Such estimates can then be translated into the necessary estimates

of E[eτ |H ] and σ2
H for constructing M2,L and M2,U. The unknown conditional moments could

also be set using external information, or tabulated across different values to assess the sensitivity

of the resulting prediction intervals. See Cattaneo, Feng, Palomba and Titiunik (2023) for more

implementation details.

Example 4.1 (Individual Treatment Effect, τik, continued). For the causal predictand τik, the

out-of-sample error is given by

eτik = Yi(Ti+k)(∞)− p
[i]′
Ti+kβ0 = e

[i]
Ti+k,

If we assume e
[i]
t − E[e[i]t |H ] is sub-Gaussian conditional on H , then the strategy outlined above

can be applied.

Example 4.2 (Average Post-Treatment Effect, τi·, continued). For the causal predictand τi·, the

out-of-sample error is given by

eτi· :=
1

T − Ti + 1

T∑
t=Ti

(
Yit(∞)− p

[i]′
t β

[i]
0

)
=

1

T − Ti + 1

T∑
t=Ti

e
[i]
t .

The approach outlined above can still be applied to eτi·. For example, if e
[i]
t −E[e

[i]
t |H ] is conditional-

on-H sub-Gaussian with parameter σH ,t > 0 for t = Ti, · · · , T , it can be shown that eτi·, as the

average of e
[i]
t across time, satisfies that for any ε > 0,

P(|eτi· − E[eτi· |H ]| ≥ ε|H ) ≤ 2 exp
(
− ε2/(2σ̄2

H )
)
, σ̄H =

1

T − Ti + 1

T∑
t=Ti

σH ,t.

This inequality holds regardless of the dependence structure of e
[i]
t . If e

[i]
t is independent over t, the
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above result can be improved:

P(|eτi· − E[eτi· |H ]| ≥ ε|H ) ≤ 2 exp
(
− ε2/(2σ̃2

H )
)
, σ̃H =

1

T − Ti + 1

( T∑
t=Ti

σ2
H ,t

)1/2

.

In this case, one can characterize each σH ,t, t = Ti, · · · , T , and use the idea outlined above to

construct bounds on eτi·.

Alternatively, one could construct a pre-treatment sequence of errors that is analogous to eτi·:

ẽ
[i]
t :=

1

T − Ti + 1

ℓ+T−Ti∑
t=ℓ

e
[i]
t , 1 ≤ ℓ ≤ 2Ti − T − 1,

and then apply the strategy outlined before to this new sequence of errors, which requires character-

izing the (conditional) moments of ẽ
[i]
t . One caveat is that by construction, ẽ

[i]
t could have a different

dependence structure from the original sequence e
[i]
t . For example, even if e

[i]
t is independent over

t conditional on H , ẽ
[i]
t would be (T − Ti + 1)-dependent conditional on H in general, that is, ẽ

[i]
t

is independent of ẽ
[i]
t+ℓ conditional on H if ℓ ≥ T − Ti + 1.

Example 4.3 (Average Treatment Effect on the Treated at s0 after k Periods, τ·k,s0 , continued).

In this scenario, the out-of-sample error is given by

eτ·k,s0 :=
1

ns0

∑
i:Ti=s0

(
Yi(s0+k)(∞)− p

[i]′
s0+kβ

[i]
0

)
=

1

ns0

∑
i:Ti=s0

e
[i]
s0+k.

The out-of-sample error above is similar to that defined in Example 4.2 except that eτ·k,s0 is a cross-

sectional average of e
[i]
t rather than a time-series average. The uncertainty quantification strategy

outlined in Example 4.2 can still be applied, with the caveat that it is uncommon in SC analysis to

assume e
[i]
t is stationary and/or independent over i. By contrast, it is reasonable to assume e

[i]
t is

stationary and/or independent (at least weakly dependent) over time.

Example 4.4 (Average Treatment Effect on all Treated after k Periods, τ·k, continued). In this

scenario, the out-of-sample error is given by

eτ·k :=
1

N1

N1∑
i=1

(
Yi(Ti+k)(∞)− p

[i]′
Ti+kβ

[i]
0

)
=

1

N1

N1∑
i=1

e
[i]
Ti+k.
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Since the adoption time Ti may be heterogeneous across i, eτ·k is an average of the individual errors

e
[i]
t of different units in different periods. Again, one can characterize the (conditional) moments

of each e
[i]
t and use the concentration-inequality-based approach to bound eτ·k . By contrast, it would

be difficult to implement the other strategy outlined in Example 4.2 that relies on constructed pre-

treatment averaged errors analogous to eτ·k , since such averages may include errors that are far

away in time and their dependence on H may be very complex.

In addition to the concentration-based approach described above, other strategies, including

location-scale models and quantile regression, were proposed in Cattaneo, Feng and Titiunik (2021)

for out-of-sample uncertainty quantification. We briefly review them in Supplemental Appendix

S.1.1.

Main theorem . We present our main theorem, which shows that the prediction interval con-

structed above achieves approximately (1− α1 − α2) conditional coverage probability, which holds

with high probability on H . We use ∥ · ∥∗ to denote the dual norm of ∥ · ∥ on Rd, use ∥ · ∥F to

denote the Frobenius matrix norm, and use B(0, ε) to denote an ε-neighborhood around zero for

some ε > 0.

Theorem 1. Assume W and R are convex, β̂ in (3.1) and β0 in (4.2) exist, H = σ(B,C,pτ ),

and M1,L, M1,U, M2,L and M2,U are specified as in (4.4) and (4.5). In addition, for some finite

non-negative constants ϵγ, πγ, ϖ
⋆
δ , ϵ

⋆
δ, π

⋆
δ , ϖ

⋆
∆, ϵ

⋆
∆, π

⋆
∆, ϵ

⋆
γ,1, ϵ

⋆
γ,2 and π⋆

γ, the following conditions

hold:

(i) P[P(p′
τ (β̂ − β0) ∈ [cL(α0), cU(1− α0)]|H ) ≥ 1− α0 − ϵγ ] ≥ 1− πγ for any α0 ∈ (0, 1);

(ii) P[P(sup{∥δ∥ : δ ∈MG} ≤ ϖ⋆
δ |H ) ≥ 1− ϵ⋆δ ] ≥ 1− π⋆

δ ;

(iii) P[P(supa∈∆∩B(0,ϖ⋆
δ )
dist(a,∆⋆ ∩ B(0, ε)) ≤ ϖ⋆

∆ |H ) ≥ 1− ϵ⋆∆] ≥ 1− π⋆
∆;

(iv) P[P(∥Σ−1/2Σ̂Σ−1/2 − Id∥F ≤ 2ϵ⋆γ,1|H ) ≥ 1− ϵ⋆γ,2] ≥ 1− π⋆
γ;

(v) eτ − E[eτ |H ] is sub-Gaussian conditional on H with parameter σH .

Then, for ϵ⋆γ,1 ∈ [0, 1/4],

P
{
P
(
τ ∈ [τ̂ +M1,L −M2,U − ε∆, τ̂ +M1,U −M2,L + ε∆]

∣∣H )
≥ 1− α1 − α2 − ϵ

}
≥ 1− π,

where ϵ = ϵγ + 2ϵ⋆γ,1 + ϵ⋆γ,2 + 2ϵ⋆δ + ϵ⋆∆, π = πγ + π⋆
γ + π⋆

δ + π⋆
∆ and ε∆ = ∥pτ∥∗ϖ⋆

∆.

23



Assumptions (i)-(iv) are high-level conditions used for in-sample uncertainty quantification, which

can be verified in many practically relevant scenarios. See more detailed discussion in Section 4.1.

Condition (v), as we emphasized before, is a moment condition on eτ that is used to showcase our

out-of-sample uncertainty quantification strategy and can be relaxed by utilizing other appropriate

concentration inequalities. Moreover, the constant ε∆ in the theorem is used to adjust the prediction

interval for nonlinear constraints. In many SC applications with linear constraints only (e.g.,

simplex or lasso constraint), such adjustment is unnecessary and we can set ε∆ = 0. See Section

5.3 for more discussion.

4.1 Discussion of Conditions (i)-(iv)

Theorem 1 relies on the high-level conditions (i)-(iv). We discuss each of them in more detail.

• Condition (i). This condition formalizes the idea of distributional approximation of γ̂ − γ by

a Gaussian vector G. Lemma S.1 in the Supplemental Appendix verifies (i) by assuming the

error term (u
[1]
t,1, · · · , u

[1]
t,M , · · · , u[N1]

t,1 , · · · , u[N1]
t,M )′ is independent over 1 ≤ t ≤ T0 conditional on

H . In fact, (i) also holds when the errors are only weakly dependent (e.g., β-mixing) conditional

on H . See more discussion in Section S.2.2 of the Supplemental Appendix. Importantly, the

features included in A and B could be non-stationary, thus covering the cointegration case which

is common in SC applications.

• Condition (ii). This is a mild condition on the concentration of δ ∈ MG. The requirement

δ′Q̂δ− 2G′δ ≤ 0 is usually known as the basic inequality in regression analysis (see Chapter 7 of

Wainwright (2019) for the example of lasso). The vector G is (conditional) Gaussian by construc-

tion, making condition (ii) easy to verify based on well-known bounds for Gaussian distributions.

This condition holds in a variety of empirically relevant settings, including outcomes-only regres-

sion with i.i.d. data, multi-equation regression with weakly dependent data, and cointegrated

outcomes and features settings.

• Condition (iii). This is a high-level requirement on the “closeness” between ∆ and ∆⋆. We

propose a strategy for constructing ∆⋆ that can be shown to satisfy (iii) if the constraints specified
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in W and R are formed by smooth functions. Suppose that

W ×R =
{
β ∈ Rd : meq(β) = 0,min(β) ≤ 0

}
,

where meq(·) ∈ Rdeq and min(·) ∈ Rdin and deq and din denote the number of equality and

inequality constraints inW×R, respectively. Let the jth constraint in min(·) be min,j(·). Given

tuning parameters ϱj > 0, j = 1, · · · , din, let A = {j1, · · · , jk} denote the set of indices for the

inequality constraints such that min,j(β̂) > −ϱj . Then define

∆⋆ =
{
β − β̂ : meq(β) = 0,min,j(β) ≤ min,j(β̂) for j ∈ A,min,l(β) ≤ 0 for l /∈ A

}
. (4.6)

The following lemma verifies condition (iii) for this ∆⋆. We use smin(M) to denote the minimum

singular value of a matrix M.

Lemma 1. Let ∥·∥ be the Euclidean norm for vectors and the spectral norm for matrices. Assume

that with probability over H at least 1 − π⋆
∆, the following conditions hold: (i) P(∥β̂ − β0∥ ≤

ϖ⋆
δ |H ) ≥ 1−ϵ⋆∆; (ii) m(·) = (meq(·)′,min(·)′)′ is twice continuously differentiable on B(β0, ϖ

⋆
δ )

with infβ∈B(β0,ϖ⋆
δ )
smin(

∂
∂β′m(β)) ≥ cmin for some constant cmin > 0; and (iii) for all 1 ≤ j ≤ din,

ϱj ∈ (cϖ⋆
δ , |min,j(β0)| − cϖ⋆

δ ) for some c > 0 specified in the proof. Then, for ∆⋆ defined in

(4.6), condition (iii) in Theorem 1 holds with ϖ⋆
∆ = C(ϖ⋆

δ )
2 for some constant C > 0.

In this lemma, the tuning parameters ϱj are introduced to guarantee that with high probability,

we can correctly differentiate the binding inequality constraints from the other non-binding ones.

In Section 5 below, we provide more practical details about choosing ϱj . Also, the concentration

requirement for β̂ specified in this lemma is usually mild. Since β̂ satisfies the basic inequality

(β̂−β0)
′Q̂(β̂−β0)− 2(γ̂ − γ)′(β̂−β0) ≤ 0, the concentration of β̂ can be shown by combining

a distributional approximation of γ̂ − γ by a Gaussian vector G and the idea outlined in the

previous discussion about condition (ii).

• Condition (iv). This is a requirement that Σ̂ be a “good” approximation of the unknown

covariance matrix Σ. Many standard covariance estimation strategies such as the family of

well-known heteroskedasticity-consistent estimators can be utilized.

25



4.2 Simultaneous Prediction Intervals

So far we have focused on constructing prediction intervals that have high coverage of the desired

treatment effects, in particular, the individual treatment effect in each post-treatment period. In

some applications, it might be appealing to construct prediction intervals that have high simultane-

ous coverage in multiple post-treatment periods, usually termed simultaneous prediction intervals

in the literature. They can be employed to test, for example, whether the largest (or smallest)

treatment effect across different periods is significantly different from zero.

Specifically, for a particular treated unit 1 ≤ i ≤ N1, we aim to construct a sequence of intervals

Ik for 0 ≤ k ≤ L for some L ≤ T − Ti such that

P
{
P
[
τik ∈ Ik, for all 0 ≤ k ≤ L

∣∣H ]
≥ 1− α

}
≥ 1− π.

As described before, the uncertainty of the predicted individual treatment effect τ̂ik comes from

the in-sample error p′
τik

(β̂ − β0) and the out-of-sample error e
[i]
Ti+k.

Regarding the in-sample error, the following is an immediate generalization of the prediction

interval described in (4.4), which enjoys simultaneous coverage in multiple periods. If the constraints

imposed in ∆ are linear (such as simplex and lasso constraints), set

M1,L := (α1/2)-quantile of inf
{
p′
τik

δ : δ ∈ ∆⋆, ℓ⋆(δ) ≤ 0, 0 ≤ k ≤ L
}

and

M1,U := (1− α1/2)-quantile of sup
{
p′
τik

δ : δ ∈ ∆⋆, ℓ⋆(δ) ≤ 0, 0 ≤ k ≤ L
}
,

which guarantees that with high probability,

P
[
M1,L ≤ p′

τik
(β̂ − β0) ≤M1,U for all 0 ≤ k ≤ L

∣∣H ]
≥ 1− α1.

If the constraints imposed in ∆ are nonlinear (such as the ridge-type constraint), further decrease

the lower bound M1,L and increase the upper bound M1,U defined above by some ε∆. We regard ε∆

as a small tuning parameter used to adjust for nonlinear constraints. See more discussion about

selecting this parameter in Section 5.3.

Regarding the out-of-sample error, the goal is to find M2,L and M2,U such that with high proba-
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bility,

P
[
M2,L ≤ e

[i]
Ti+k ≤M2,U for all 0 ≤ k ≤ L

∣∣H ]
≥ 1− α2.

An easy-to-implement strategy analogous to that described in (4.5) is to adjust the intervals based

on maximal inequalities. For example, suppose that each e
[i]
Ti+k − E[e[i]Ti+k|H ], 0 ≤ k ≤ L, is

conditional sub-Gaussian with parameter σH ,k (but is not necessarily independent over k). Then,

P
(

max
0≤k≤L

|e[i]Ti+k − E[e[i]Ti+k|H ]| ≥ ε
∣∣∣H )

≤ 2
L∑

k=0

exp
(
− ε2

2σ2
H ,k

)
.

If σH ,k ≤ σH for all 0 ≤ k ≤ T − Ti, then one can take M2,L = E[eTi+k|H ] − ε and M2,U =

E[eTi+k|H ]+ε with ε =
√

2σ2
H log(2(L+ 1)/α2). Compared with prediction intervals with validity

for each period constructed the same way, these simultaneous prediction intervals are slightly wider

due to the additional factor
√
log(L+ 1). In practice, one only needs to estimate the conditional

mean and variance of e
[i]
t using the pre-treatment residuals; flexible parametric or non-parametric

estimation methods can be used.

Again, the sub-Gaussianity assumption can be relaxed by using other concentration inequalities

requiring weaker moment conditions, though the resulting simultaneous prediction intervals may be

wider. Also, there are other strategies to construct prediction intervals that simultaneously cover

multiple out-of-sample errors, though they are computationally more cumbersome and usually

require more stringent conditions. See Appendix S.1.2 for a brief discussion.

The idea outlined above to achieve simultaneous coverage is general and can also be used to,

for example, construct prediction intervals that simultaneously cover treatment effects for multi-

ple treated units rather than for multiple post-treatment periods. In our empirical application,

we construct simultaneous prediction intervals for average post-treatment effects across different

economies; see details in Section 6.

5 Optimization and Tuning Parameter Selection

This section discusses the scalable robust optimization implementations and principled tuning pa-

rameter selection based on our theoretical results. We first show in Section 5.1 that our proposed

SC methods for prediction and uncertainty quantification can be recast as conic optimization pro-
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grams, which gives massive speed improvement in practice. Then, Sections 5.2 and 5.3 propose

easy-to-implement methods for selecting the two kinds of tuning parameters that are used to con-

struct the proposed prediction intervals: {ϱj : 1 ≤ j ≤ din} and ε∆. Recall that ϱjs are used to

define the constraint set ∆⋆ in simulation in order to approximately preserve the local geometry of

the original constraint set ∆, while ε∆ is an adjustment of the bounds on the in-sample error that

takes into account the “distance” between ∆ and ∆⋆. In most SC applications, each constraint is

imposed on parameters associated with one treated unit rather than multiple treated units, which

will be the focus of our discussion below.

5.1 Conic Programming Approach

We first introduce three common types of convex optimization problems: the quadratically con-

strained linear problem (QCLP), the quadratically constrained quadratic program (QCQP), and the

second-order cone program (SOCP). Second, we illustrate the link between these families of convex

problems. Finally, the optimization problems underlying the prediction/estimation and uncertainty

quantification problems for SC presented in Section 3 are QCQPs and QCLPs, respectively, and

thus we show how to represent them as SOCPs to obtain scalable robust implementations. For

background knowledge and technical details, see Boyd and Vandenberghe (2004).

The QCQPs and QCLPs are constrained optimization problems of the following form:

min
x

x′P0x+ q′
0x+ w (5.1)

subject to x′Pjx+ q′
jx+ rj ≤ 0, j = 1, . . . ,m (Quadratic inequality constraint)

Fx = g, (Linear equality constraint)

where P0,P1, . . . ,Pm ∈ Mn×n(R), q0,q1, . . . ,qm ∈ Rn, x ∈ Rn, F ∈ Rm×n, g ∈ Rm, and

r0, r1, . . . , rm, w ∈ R. If all the matrices P0,P1, . . . ,Pm are positive semi-definite, the QCQP is

convex. Moreover, if P0 = 0 the QCQP becomes a QCLP. For this reason, in what follows we will

restrict our attention to QCQPs as they naturally embed QCLPs.

The program (5.1) above can be recast as a SOCP. We use ∥ · ∥p to denote the ℓp vector norm

for p ≥ 1. Let K be a cone such that K = Rm
+ × K1 × K2 × · · · × KL where Kl := {(k0,k1) ∈

R×Rl : ||k1||2 ≤ k0}, l = 1, . . . , L. Let ⪯K be the generalized inequality associated with the cone
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K (see Supplemental Appendix Section S.3.1 for more technical details). An optimization problem

is called a second-order cone program if it has the following form

min
x

c′x, (5.2)

subject to Gx ⪯K h, (Second-order cone constraint)

Ax = b. (Linear equality constraint)

The generic SC weight construction (3.1) is a QCQP, which can be recast in general as a SOCP.

We illustrate the approach for the L1-L2 constraint.2 Consider first the prediction/estimation SC

optimization problem, which relies on the following program:

min
w,r

(A−Bw −Cr)′V(A−Bw −Cr) (5.3)

subject to ||w[i]||1 = Q
[i]
1 , i = 1, . . . , N1 (L1 equality constraints)

||w[i]||2 ≤ Q
[i]
2 , i = 1, . . . , N1 (L2 inequality constraints)

w ≥ 0, (non-negativity constraint)

where, as always, ≥ is understood as a component-wise inequality for vectors (w ∈ RJ ·N1). First,

notice that the non-convex constraints ||w[i]||1 = Q
[i]
1 , i = 1, . . . , N1 can be replaced with the convex

constraints 1′w[i] = Q
[i]
1 , i = 1, . . . , N1 because of the non-negativity constraint on the elements of

w. Then, we can cast (5.3) as a SOCP as follows

min
w,r,v,{si}

N1
i=1

v

subject to 1′w[i] = Q
[i]
1 , (L1 equality constraints)

−w ⪯C1 0, (cone in RJ ·N1)[
1− v

2V1/2(A−Bw −Cr)

]
⪯C2 1 + v, (cone in R2+T0·M ·N1)

si ⪯C3 Q
[i]
1 , i = 1, . . . , N1 (N1 cones in R)

2Note that simplex, ridge, or least squares are particular cases of L1-L2. In the Supplemental Appendix 2.3, we
also illustrate the case when W is a lasso-type constraint, and provide more general details.
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[
1− si
2w[i]

]
⪯C4 1 + si, i = 1, . . . , N1 (N1 cones in R2+J)

where K = C1×C2×CN1
3 ×C

N1
4 = RJ ·N1

+ ×KT0·M ·N1+1×RN1
+ ×K

N1
J+1 is the conic constraint for this

program.

For uncertainty quantification, we need to solve the optimization problem underlying (4.4). We

discuss the lower bound only. Recalling that β = (w′, r′)′, we have

inf
β=(w′,r′)′

p′
τ (β − β̂) (5.4)

subject to ||w[i]||1 = Q
[i]
1 , i = 1, . . . , N1 (L1 equality constraints)

||w[i]||2 ≤ Q
[i]
2 + ϱ

[i]
1 , i = 1, . . . , N1 (L2 inequality constraints)

w ≥ −ϱ2, (non-negativity constraint)

(β − β̂)′Q̂(β − β̂)− 2(G⋆)′(β − β̂) ≤ 0, (constrained least squares)

where the scalars ϱ
[i]
1 , i = 1, . . . , N1 and the vector ϱ2 are regularization parameters used to relax

∆ (to ∆⋆ as discussed in Section 4).

We can cast the SC optimization problem in (5.4) in conic form as follows:

min
w,r,{si}

N1
i=1,t

p′
τβ

subject to 1′w[i] = Q
[i]
1 , i = 1, . . . , N1 (L1 equality constraints)

t+ a′β + f ⪯C1 0, (cone in R)

−w ⪯C2 ϱ2, (cone in RJ ·N1)

si ⪯C3 Q
[i]
1 + ϱ

[i]
1 , i = 1, . . . , N1 (N1 cones in R)[

1− si
2w[i]

]
⪯C4 1 + si, i = 1, . . . , N1 (N1 cones in R2+J)[

1− t

2Q1/2β

]
⪯C5 1 + t, (cone in R2+(J+KM)·N1)

where K = C1×C2×C3×C4×C5 = R+×RJ ·N1
+ ×RN1

+ ×K
N1
1+J×K1+(J+KM)·N1

is the conic constraint

for this program, a = −2(′Qβ̂ +G⋆)′, and f = β̂′Qβ̂ + 2G⋆β̂.

The approaches above are implemented in our companion general-purpose software (Cattaneo,
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Feng, Palomba and Titiunik, 2023), where we show that they lead to remarkable speed and scala-

bility improvements. The supplemental appendix gives further discussion and other methodological

details.

5.2 Defining Constraints in Simulation

In the proposed procedure, a sequence of tuning parameters ϱj , j = 1, · · · , din, is introduced to

determine which inequality constraints are binding. We propose a feasible strategy to select ϱj .

Consider a (generic) treated unit i, and suppose that it is associated with inequality constraints

with indices in S [i]. We start with the idea of condition (ii) in Theorem 1 and use a parameter ϱ[i]

to bound the deviation of β̂[i] from β
[i]
0 . We use the formula

ϱ[i] = C log(T0)
c

T
1/2
0

,

where c = 1/2 if the data are i.i.d. or weakly dependent, and c = 1 if A[i] and B[i] form a

cointegrated system, and C is one of the following

C1 =
σ̂u

min1≤j≤J σ̂bj
, C2 =

max1≤j≤J σ̂bj σ̂u

min1≤j≤J σ̂2
bj

, C3 =
max1≤j≤J σ̂bju

min1≤j≤J σ̂2
bj

, (5.5)

where σ̂bj ,u is the estimated (unconditional) covariance between the pseudo-true residual u[i] and

the jth column of B[i] (the features of the jth control unit), and σ̂u and σ̂bj are the estimated

(unconditional) standard deviation of u[i] and the jth column of B[i], respectively. If the synthetic

control weights were constructed based on both stationary and non-stationary features, the non-

stationary components would govern the precision of the estimation. In such cases, one could ignore

the stationary components and set c = 1.

Next, we define possibly heterogeneous parameters ϱj , j ∈ S [i], for different inequality constraints

associated with unit i. By the first-order Taylor expansion, if the jth inequality constraint is

binding, i.e., min,j(β
[i]
0 ) = 0, then

min,j(β̂
[i]) ≈ ∂

∂β′min,j(β
[i]
0 )(β̂ − β0).
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Then, an intuitive choice of ϱj would be

ϱj =
∥∥∥ ∂

∂β
min,j(β̂

[i])
∥∥∥
1
× ϱ[i], j ∈ S [i]. (5.6)

If min,j(β̂
[i]) > −ϱj , we let the jth constraint be binding in the simulation.

5.3 Adjustment for Nonlinear Constraints

When some constraints in ∆ are nonlinear (e.g., ridge-type constraints), we introduce a constant ε∆

to adjust the bounds on the in-sample error; this constant depends on the distance ϖ⋆
∆ between the

localized constraint sets ∆ and ∆⋆ specified in condition (iii) of Theorem 1. This adjustment is only

necessary for nonlinear constraints; it is not needed when the constraints are linear in parameters

(e.g., simplex or lasso constraints).

The distance between ∆ and ∆⋆ typically depends on the the first and second derivatives of

the constraint functions min(·). Again, we first focus on the inequality constraints related to one

particular treated unit i. Denote by min,S[i](·) the vector of constraint functions min,j(·) with

j ∈ S [i]. We propose to set

ε
[i]
∆ = ∥p[i]

τ ∥1 ×
√
|S [i]|
2

s−1
min

( ∂

∂β
min,S[i](β̂[i])

)
× max

j∈S[i]
smax

( ∂

∂β∂β′min,j(β̂
[i])

)
× (ϱ[i])2,

where p
[i]
τ denotes the subvector of pτ that corresponds to β

[i]
0 , and |S [i]| denotes the cardinality of

S [i]. Denote by Nτ the set of treated units to which the causal predictand τ is related. Then set

ε∆ =
∑
i∈Nτ

ε
[i]
∆ .

When constraints are linear, the second derivative of min,j(·) is zero, and the above choice of ε∆ is

exactly 0.

One example of nonlinear constraints that is commonly used in practice is the ridge-type restric-

tion. Specifically, suppose that there is one treated unit i and one constraint

∥β[i]∥22 = 1.
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The above choice of ε∆ simplifies to

ε
[i]
∆ = ∥p[i]

τ ∥1 × (2∥β̂[i]∥2)−1 × (ϱ[i])2.

Remark 1 (Simultaneous Prediction Intervals). In Section 4.2, we discussed how to construct

simultaneous prediction intervals. In the case of nonlinear constraints, a tuning parameter ε∆

was introduced to adjust the bounds on the in-sample errors. In this context, we can apply the

procedure described above to each period Ti+k, 0 ≤ k ≤ L, which gives us a sequence of constants,

denoted by ε∆,k, 0 ≤ k ≤ L. Then, we let ε∆ = max0≤k≤L ε∆,k. ⌟

5.4 Summary of Algorithmic Implementation

This section summarizes the main procedures underlying the computation of the synthetic con-

trol weights ŵ (Algorithm 1) and the quantification of in-sample and out-of-sample uncertainty

(Algorithm 2). We use qZ(α) to denote the α-th quantile of the random variable Z, and assume

that the researcher has collected some data denoted by {(Yit,Xit, Ti)
N
i=1 : t = 1, . . . , T}, where Yit

indicates the outcome of interest, Xit is a vector of other features, and Ti is a variable indicating

the treatment timing.

Algorithm 1 Computation of ŵ

Require: data {(Yit,Xit, Ti)
N
i=1 : t = 1, . . . , T}

define the conditioning set H = {B,C,pτ}
a: choose target predictand τ (see Section 3)
b: choose features in (Yit,Xit) to include in A and B
c: choose adjustment covariates to include in C (e.g., linear trend, constant)

choose shape of feasibility sets W and R (see Section 3.1)
choose a symmetric weighting matrix V
solve optimization problem in (3.1) and get β̂ = (ŵ′, r̂′)′
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Algorithm 2 Uncertainty Quantification

Require: choose levels α1, α2 ∈ (0, 1) and the number of simulations S

In-sample Uncertainty Quantification

form feasible constraint set ∆⋆

a: calculate ϱ using (5.5) and using ϱj , j = 1, . . . , din (5.6)

b: obtain A = {j : min,j(β̂) > −ϱj}
c: get ∆⋆ using (4.6)

estimate Σ
a: estimate conditional moments of the pseudo-residual u, E[u|H ] and V[u|H ]
b: compute Σ̂ = (Z′V) V̂[u|H ](VZ) where Z = (B,C)

for s← 1 to S do:
a: draw G⋆ ∼ N(0, Σ̂)
b: define ℓ⋆(β) = β′Q̂β − 2 (G⋆)′ β
c: solve

l(s) := inf
β∈∆⋆

ℓ⋆(β)≤0

p′
τβ and u(s) := sup

β∈∆⋆

ℓ⋆(β)≤0

p′
τβ

get M1,L as the (α1/2)−quantile of {l(s)}Ss=1 and M1,U as the (1− α1/2)−quantile of {u(s)}Ss=1

Out-of-sample Uncertainty Quantification

procedure sub-gaussian:
a: use pre-treatment residuals to estimate E [eτ |H ] and σ2

H
b: get

M2,L := Ê [eτ |H ]−
√

2σ̂2
H log (2/α2) and M2,U := Ê [eτ |H ] +

√
2σ̂2

H log (2/α2)

end procedure

A more detailed discussion of the procedures, including recommended rules of thumbs for im-

plementation and other practical regularization choices, can be found in Cattaneo, Feng, Palomba

and Titiunik (2023, Section 3.1 and Section 4.3).

6 Empirical Application

We illustrate our methodology with a re-analysis of the question studied in Billmeier and Nannicini

(2013). For brevity, we only report results for European countries; the interested reader can

find complete results for Africa, Asia, North America, and South America in Section S.6 of the

Supplemental Appendix. We study the four causal predictands introduced in Section 3, where

the i subscript indexes the countries in our sample: (i) individual country treatment effects 1 to
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10 periods after the liberalization occurred (Example 3.1, τik for k = 1, . . . 10); (ii) average post-

treatment effect for each country (Example 3.2, τi·); (iii) average treatment effect on countries

liberalized in 1991, 1 to 10 periods after liberalization (Example 3.3, τ·k,1991 for k = 1, . . . 10); (iv)

average treatment effect on all liberalized countries, 1 to 10 periods after liberalization (Example

3.4, τ·k for k = 1, . . . 10).

6.1 Empirical Strategy

In our main specification, we match on two features (M = 2), logarithm of GDP per capita and

percentage of complete secondary schooling attained in population. We obtain the SC weights

under the L1-L2 constraint, i.e.,

W =
N1

ą

i=1

{
w[i] ∈ RJ : ||w[i]||1 = 1, ||w[i]||2 ≤ Q

[i]
2

}
,

and conduct covariate adjustment by including a constant term that is common across features,

and a constant term and a linear time trend for each feature. We impose no constraint on these

additional parameters, i.e., R = RKMN1 .3 We set the weighting matrix V = I. The vector

of predictors pt contains the (log) GDP per capita of countries in the donor pool in each post-

treatment period, a constant term, and a linear trend. As described in Section 3, given a particular

treatment effect τ , the predictor pτ is defined accordingly. Table 2 describes the matrices in detail.

In addition, since political and economic reforms do not happen overnight, we take into account

the possibility of anticipation effects up to 1 year before the treatment. For example, Albania

underwent a process of economic liberalization in 1992, according to the Sachs-Warner indicator.

To address the presence of plausible anticipation effects, we define the pre-treatment period for

Albania as 1963-1990 rather than 1963-1991.

In order to quantify the in-sample uncertainty from estimating the SC weights, we need to

construct the bounds M1,L and M1,U on p′
τ (β̂ − β0). The following strategy is adopted. First,

we treat the synthetic control weights as possibly misspecified, thus estimating both the first

and second conditional moments of the pseudo-true residuals u. The conditional first moment

E[u |H ] is estimated feature-by-feature using a linear-in-parameters regression of the residual

3In Section S.5 of the Supplemental Appendix, we replicate the whole analysis using the canonical “simplex”
constraint, i.e., W =

ŚN1
i=1{w

[i] ∈ RJ
+ : ||w[i]||1 = 1}.
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Table 2: Description of main quantities used for prediction/inference.

Matrix Description

A[i] =

[
A

[i]
1

A
[i]
2

]
pre-treatment (log) GDP per capita and percentage of complete sec-
ondary schooling of the ith treated unit

B[i] =

[
B

[i]
1

B
[i]
2

]
pre-treatment GDP per capita and percentage of complete secondary
schooling of the donors for the ith treated unit

C[i] =

[
1 C

[i]
1 0

1 0 C
[i]
2

]
additional covariates: a constant and a linear trend in each equation for
the ith treated unit and a common constant across equations

p
[i]
t =

[
x
[i]
t

g
[i]
t

]
post-treatment predictors for the ith treated unit: (log) GDP per capita

of donors, x
[i]
t , and a constant and a linear trend, so g

[i]
t = (1, t, 0, 0)

Notes: all quantities in the table are defined for a generic treated unit i = 1, . . . , N1. Feature 1 is GDP per
capita and feature 2 is the percentage of complete secondary schooling attained in population. The vectors
0 and 1 are conformable vectors of zeros and ones, respectively.

û = A−Bŵ −Cr̂ on B and the first lag of B, whereas the conditional second moment V[u |H ]

is estimated with an HC1-type estimator. We then draw S = 200 i.i.d. random vectors from

the Gaussian distribution N(0, Σ̂), conditional on the data, to simulate the criterion function

ℓ⋆(s)(β − β0) := (β − β0)
′Q̂(β − β0)− 2G′

(s)(β − β0), s = 1, . . . , 200, and solve the following op-

timization problems

l(s) := inf
β−β0∈∆⋆,

ℓ⋆
(s)

(β−β0)≤0

p′
τ (β − β0) and u(s) := sup

β−β0∈∆⋆,
ℓ⋆
(s)

(β−β0)≤0

p′
τ (β − β0),

where ∆⋆ is constructed as explained in Section 4.1. Finally, M1,L is the (α1/2)−quantile of {l(s)}Ss=1

and M1,U is the (1− α1/2)−quantile of {u(s)}Ss=1, where α1 is set to 0.05.

In order to quantify the out-of-sample uncertainty from the stochastic error in the post-treatment

period, we need to construct the bounds M2,L and M2,U on eτ . We employ the non-asymptotic

bounds described in (4.5), assuming that eτ −E[eτ |H ] is sub-Gaussian conditional on H . We set

α2 = 0.05, and the conditional mean E[eτ |H ] and the sub-Gaussian parameter σH are parametrized

and estimated by a linear-in-parameters regression of the pre-treatment residuals on B.
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Finally, the prediction intervals for the counterfactual outcome and the treatment effect of interest

are given by

[
p′
τ β̂ −M1,U +M2,L; p

′
τ β̂ −M1,L +M2,U

]
and [τ̂ +M1,L −M2,U; τ̂ +M1,U −M2,L] ,

respectively.

6.2 Results

Overall, our point predictions suggest that (external) liberalization episodes in Europe had a neg-

ative impact on GDP per capita. These findings might be explained by the nation’s net trade

position, among other things. For example, a negative effect on GDP can be justified if, following

the liberalization event, the difference between imports and exports rises more than it would have

in the absence of the treatment. This difference also has to offset the likely rise in consumption

and investment. However, once we take uncertainty into account, the prediction intervals for the

synthetic control always contain the realized GDP per capita series, implying that there is no

strong evidence that the real income trajectory has been altered. In what follows, we report the

predictands described in Section 3, Examples 3.1-3.4.

Individual country treatment effect, 1 to 10 periods after liberalization (τik). In Figure 5 we

show the predicted synthetic control outcomes (panel (a)) and treatment effects (panel (b)) with

the corresponding 90% prediction intervals, and the computed weights ŵ (panel (c)). We clearly

see that in all six countries the realized trajectory of GDP per capita (black lines) lies below the

synthetic one (blue lines), suggesting that in the absence of the liberalization event, real income per

capita would have been higher. However, looking at the 90% prediction intervals (blue vertical bars),

we can see that in most cases the distance between the actual GDP series and the counterfactual

one is not different from zero with high probability for almost all units and periods. If we consider

90% simultaneous prediction intervals for each unit (blue shaded areas), it is clear that the realized

and synthetic trajectories do not simultaneously differ with high probability.

Average post-treatment effect for each liberalized country (τi·). The second causal predictand of

our interest is the average post-treatment effect for each of the six European countries we study.

Specifically, we target the average effect over the period following the liberalization up to the year
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Figure 5: Individual Treatment Effects τ̂ik.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂ik

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is quantified
using sub-Gaussian bounds.

2000. Figure 6 shows that in all countries the liberalization episode depressed the real income

per capita. However, if we consider individual and simultaneous prediction intervals that possess

high simultaneous coverage across treated units, we can see that no treated unit shows a negative

average post-treatment effect with high probability.

Average treatment effect on countries liberalized in 1991 (τ·k,1991). In this third exercise, we analyze

38



Figure 6: Average Post-Treatment Effects τ̂i·.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂i·

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas red bars report 90% simultaneous prediction intervals
(that simultaneously cover six treated units). In-sample uncertainty is quantified using 200 simulations, whereas
out-of-sample uncertainty is quantified using sub-Gaussian bounds. The small number at the bottom-right corner of
panel (a) represents the number of periods over which the post-treatment average is computed.

the average treatment effect on the treated at 1991, that is, on countries that liberalized in 1991:

Bulgaria, Czech Republic, Slovak Republic, and Slovenia. To study this causal predictand, we

are again match on real GDP per capita and percentage of complete secondary schooling. In the

Supplemental Appendix Section S.7 we also report the results using a simplex-type constraint and
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the results using only GDP (M = 1). Even in this case, the trajectory for the synthetic real income

lies above the realized one, suggesting a negative impact of the liberalization event. However, once

again, quantifying uncertainty shows that, with high probability, we can conclude that the two

series are not different from each other.

Figure 7: Average Treatment Effects on the Treated in 1991 τ·k,1991.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂·k,1991

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty using sub-
Gaussian bounds.

Average treatment effect on all liberalized countries (τ·k). In this last and fourth exercise, we focus

on a popular causal predictand: the average treatment effect on all the treated countries, that is,

on all countries that liberalized, regardless of when they did so. We focus on the effects up to 10

periods after the adoption of liberalization, which occurs at different times for different countries.

Figure 8 reports the results for liberalized countries in Europe. To compute this predictand, we

first construct a synthetic control for each treated unit (see panel (c)) and then we pool such

synthetic controls together in the post-treatment period to get a single prediction and a single
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prediction intervals. Panel (a) and panel (b) show that pooling across the 7 European countries

that embarked on liberalization program helps reducing the uncertainty surrounding the synthetic

trajectory. Indeed, this predictand is the only one that suggests that the trajectories for synthetic

real income and actual real income differ with high probability for the average treated country.

Figure 8: Average Treatment Effects on the Treated τ·k.

(a) Yit(Ti) and Ŷit(∞) (b) τ̂·k

(c) ŵi

Notes: Blue bars report 90% prediction intervals, whereas blue shaded areas report 90% simultaneous prediction
intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty using sub-
Gaussian bounds.

7 Conclusion

We developed prediction intervals to quantify the uncertainty of a large class of synthetic control

predictions or estimators in settings with staggered treatment adoption. Because many synthetic

control applications have a limited number of observations, our inference procedures are based on
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non-asymptotic concentration arguments. The construction of our prediction intervals is designed to

capture two sources of uncertainty: the first is the construction or estimation of the synthetic control

weights with pre-treatment data, and the second is the variability of the post-treatment outcomes.

By combining both sources in a prediction interval, our procedure offers precise non-asymptotic

coverage probability guarantees, and allows researchers to implement sensitivity analyses to assess

how robust the conclusions of the analysis are to various levels of uncertainty. Our framework is

general, allowing for one or multiple treated units, simultaneous or staggered treatment adoption,

linear or non-linear constraints, and stationary or non-stationary data. To enhance implementation,

we also showed how to recast the methods as conic optimization programs and how to choose the

necessary tuning parameters in a principled data-driven way. We illustrated our methods with an

empirical application studying the effect of economic liberalization on GDP for European countries

in the 1990s, motivated by the work of Billmeier and Nannicini (2013).

All our methods are implemented in Python, R, and Stata software, which is publicly available

and discussed in in detail in our companion article Cattaneo, Feng, Palomba and Titiunik (2023)

and in Section S.4 of the Supplemental Appendix.
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