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Abstract

We propose principled prediction intervals to quantify the uncertainty of a large class of syn-

thetic control predictions (or estimators) in settings with staggered treatment adoption, offering

precise non-asymptotic coverage probability guarantees. From a methodological perspective,

we provide a detailed discussion of different causal quantities to be predicted, which we call

causal predictands, allowing for multiple treated units with treatment adoption at possibly dif-

ferent points in time. From a theoretical perspective, our uncertainty quantification methods

improve on prior literature by (i) covering a large class of causal predictands in staggered adop-

tion settings, (ii) allowing for synthetic control methods with possibly nonlinear constraints,

(iii) proposing scalable robust conic optimization methods and principled data-driven tuning

parameter selection, and (iv) offering valid uniform inference across post-treatment periods. We

illustrate our methodology with an empirical application studying the effects of economic liberal-

ization on real GDP per capita for Sub-Saharan African countries. Companion general-purpose

software packages are provided in Python, R, and Stata.
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1 Introduction

The synthetic control (SC) method was introduced by Abadie and Gardeazabal (2003), and since

then many extensions and generalizations have been proposed (see Abadie, 2021, and references

therein). The method is now part of the standard toolkit for program evaluation and treatment

effect analysis (Abadie and Cattaneo, 2018), offering a complement to traditional difference-in-

differences, event studies, and other panel data approaches for causal inference with longitudinal

aggregate data and few treated units. Most of the synthetic control literature concentrates on

identification, as well as on prediction or point estimation of treatment effects, under different

causal inference frameworks and algorithmic implementations. In contrast, principled uncertainty

quantification of synthetic control predictions or estimators in general settings remains mostly

unexplored, despite its importance for empirical work.

Following Cattaneo, Feng and Titiunik (2021), who proposed non-asymptotic prediction inter-

vals for synthetic controls with a single-treated-unit, we employ a causal inference framework where

potential outcomes are assumed to be random and develop novel prediction intervals to quantify

the uncertainty of a large class of synthetic control predictions (or estimators) in settings with

staggered treatment adoption and multiple treated units. Our contributions include establishing

precise non-asymptotic coverage probability guarantees for our novel prediction intervals, introduc-

ing scalable robust optimization implementations for possibly nonlinear constraints in the synthetic

controls construction, developing principled tuning parameter selection, and proposing valid joint

inference methods across time. Inferential procedures with non-asymptotic probability guarantees

are valuable because synthetic control applications often have small sample sizes, impeding the ap-

plicability of asymptotic approximations. Conceptually, the proposed prediction intervals capture

two sources of uncertainty: one coming from the construction of the synthetic control weights with

pre-treatment data, and the other generated by the irreducible sampling variability introduced by

the post-treatment outcomes. Our prediction intervals also take into account potential misspecifi-

cation errors explicitly and enjoy other robustness properties due to their non-asymptotic, generic

construction. For example, our methods allow for nonlinear regularization in the synthetic con-

trols construction, which accommodates L2 penalization, L1/L2-combined penalization, and other

variants thereof. These nonlinear penalization schemes are better suited for application where the
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covariates exhibit collinearity/codependency, as opposed to L1 penalization schemes, which are

better suited for covariate shrinkage/selection.

To motivate our methodological work, we begin by introducing an empirical application in Section

2, and we use this application throughout to illustrate our contributions. Following Billmeier and

Nannicini (2013), we investigate the effect of economic liberalization in the 1990s on real GDP

per capita for Sub-Saharan African countries. This application includes multiple adoption times

and multiple treated units. Furthermore, we consider the special case of outcome-only synthetic

controls to improve the exposition and carefully account for the fact that the outcome variable

in this application is non-stationary and co-integrated. We also discuss more complex empirical

analyses in the supplemental appendix.

Our first contribution is methodological in nature due to the complexity added by the staggered

treatment adoption setup, which allows for (but does not require) the existence of multiple treated

units changing from control to treatment status at possibly different points in time. In Section 3,

we introduce a basic causal inference framework that is motivated by our empirical application and

specifically tailored to synthetic control methods with staggered treatment adoption. Using this

framework, we define different causal quantities to be predicted in the context of synthetic controls,

which we refer to as causal predictands, and explain how prediction methods are implemented.

Section 4 then discusses uncertainty quantification in the context of our empirical application

and basic causal inference framework. Motivated by our empirical application and recent advances

in the synthetic controls literature (see Abadie, 2021, and references therein), our analysis focuses

exclusively on incorporating in-sample and out-of-sample uncertainty quantification for outcome-

only synthetic control methods with non-stationary data and non-linear constraints. In this setting,

we present novel prediction intervals with precise non-asymptotic guarantees for synthetic controls

with staggered adoption, under easy-to-interpret sufficient conditions. We also discuss scalable,

robust conic optimization implementations of our methods (Boyd and Vandenberghe, 2004), data-

driven selection of tuning parameters, and valid joint inference across time.

The main empirical results are presented in Section 5. Our findings indicate that the economic

liberalization in the 1990s did not have a positive economic impact on emerging Sub-Saharan

African countries. This finding is in line with prior empirical results (Billmeier and Nannicini,

2013). The Supplemental Appendix provides additional empirical evidence supporting our main
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findings, including a re-analysis using alternative synthetic control specifications, placebo treatment

dates, donor pool constructions, and other related implementations under different assumptions.

While the basic framework developed in Sections 3 and 4 is sufficient for our empirical application,

Section 6 offers a substantive generalization of our methods that allows for general misspecification

error, multiple covariate features, and cross-equation re-weighting, among other features, when

constructing the synthetic control weights with pre-treatment data. This general framework also

provides foundational results for our empirical work, including a theoretical justification for the

methods presented in Sections 3 and 4.

1.1 Related Literature

We contribute to developing prediction/estimation and inference methods for synthetic control

settings with staggered treatment adoption. Putting aside generic linear factor model or matrix

completion methods, Ben-Michael, Feller and Rothstein (2022), Powell (2022), and Shaikh and

Toulis (2021) appear to be the only prior papers that have studied staggered treatment adoption

for synthetic controls explicitly. The first paper focuses on prediction/estimation in settings where

the pre-treatment fit is poor and develops penalization methods to improve the performance of the

canonical synthetic control method. Ben-Michael, Feller and Rothstein (2022) also suggest employ-

ing a bootstrap method for assessing uncertainty, but no formalization is provided guaranteeing its

(asymptotic) validity. Powell (2022) employs a standard parametric panel data model to discuss

estimation and inference methods for a single common treatment effect that is valid in large sam-

ples. Shaikh and Toulis (2021) focus on uncertainty quantification employing a parametric duration

model and propose a permutation-based inferential method under a symmetry assumption. Our

paper complements these prior contributions by (i) developing a general causal inference framework

for synthetic control methods with staggered treatment adoption, and (ii) offering nonparametric

inference methods with demonstrable non-asymptotic coverage guarantees and allowing for mis-

specification in the construction of the synthetic control weights. We also propose novel scalable

robust conic optimization implementations, principled tuning parameter selection methods, and a

valid joint inference procedure across multiple time periods.

Our quantification of uncertainty via non-asymptotic prediction intervals follows Cattaneo, Feng

and Titiunik (2021). These inference methods are motivated by Vovk (2012) and are most closely
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related to prior work by Chernozhukov, Wüthrich and Zhu (2021a); Chernozhukov, Wüthrich and

Zhu (2021b) on conformal prediction intervals. Relative to this literature, our contributions in-

clude: (i) allowing for a large class of causal predictands in staggered adoption settings (prior work

covered only the canonical single treated unit case); (ii) covering a large class of synthetic control

predictions with possibly nonlinear constraints (prior work allowed only linear constraints); (iii) de-

veloping scalable robust optimization implementations and proposing principled data-driven tuning

parameter selection (prior work did not provide guidance on these issues); and (iv) introducing valid

uniform inference methods across post-treatment periods (absent in prior work).

There are a few other, conceptually different, recent proposals to quantify uncertainty and con-

duct inference in the synthetic controls literature. For example, Li (2020) study correctly specified

linear factor models, Masini and Medeiros (2021) study high-dimensional penalization methods,

Agarwal, Shah, Shen and Song (2021) investigate matrix completion methods, and Shi, Miao, Hu

and Tchetgen (2023) develop inference methods using a proximal causal inference framework. All

these methods rely on asymptotic approximations, in most cases employing standard Gaussian

critical values that assume away misspecification errors and other small sample issues. Our work

complements these contributions by providing prediction intervals with non-asymptotic coverage

guarantees (Wainwright, 2019). There is also a literature in econometrics on event studies that

is loosely related to synthetic controls with staggered adoption: see, for example, Freyaldenhoven

et al. (2019, Forthcoming), Miller (2023), and references therein. Finally, all the inferential methods

mentioned so far contrast with the original method proposed by Abadie, Diamond and Hainmueller

(2010), which relies on design-based permutation of treatment assignment assuming that the po-

tential outcomes are non-random.

1.2 Paper Organization

Section 2 introduces our running empirical application. Section 3 presents the basic causal in-

ference framework for outcome-only synthetic controls with staggered treatment adoption, and

Section 4 discusses non-asymptotic uncertainty quantification in that context. Section 5 presents

our empirical results. Section 6 gives a self-contained discussion of our most general framework and

theoretical results. The Supplemental Appendix includes all proofs, additional empirical results,

and other technical details omitted to improve the exposition.
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We provide general-purpose software implementing our results in Python, R, and Stata, includ-

ing detailed documentation and additional replication materials. This software is discussed in our

companion article Cattaneo, Feng, Palomba and Titiunik (2024), where we addressed several imple-

mentation issues related to numerical optimization and tuning parameter selection. To complement

the illustration, in Section S.6 of the Supplemental Appendix, we provide more details on how to

prepare the data to analyze staggered treatment adoption using synthetic control methods using

our companion software. In addition, in the Supplemental Appendix, Section S.2.3 demonstrates

how to obtain tighter bounds for uncertainty quantification when the weighting matrix has a block

diagonal structure, and Section S.5 shows how to reformulate the synthetic control problem as a

scalable conic optimization problem to improve computational efficiency. For ease of understanding,

Table S.1 in the Supplemental Appendix summarizes the notation used throughout the paper.

2 The Effect of Liberalization on GDP for Sub-Saharan African

Countries

During the second half of the twentieth century, many countries around the world launched pro-

grams of (external) economic liberalization, booming from 22% in 1960 to 73% in the early 2000s

(Wacziarg and Welch, 2008). In the last thirty years, scholars have investigated the social and

economic consequences of such liberalization programs, often reaching conflicting conclusions (see,

e.g., Levine and Renelt, 1992; Sachs, Warner, Åslund and Fischer, 1995; DeJong and Ripoll, 2006).

The impact of liberalization policies on economic welfare has been traditionally investigated

with cross-country analyses (e.g. Sachs, Warner, Åslund and Fischer, 1995) and individual case

studies (e.g. Bhagwati and Srinivasan, 2001). More recently, scholars have turned to synthetic

control methods in the hope of employing a causal inference methodology that allows for the

presence of time-varying unobservable confounders. Employing the synthetic control framework

originally developed in Abadie and Gardeazabal (2003), Billmeier and Nannicini (2013) analyzed

the effects of liberalization in four continents: Africa, Asia, North America, and South America.

They used a pre-existing dataset of economic variables (previously used in Giavazzi and Tabellini,

2005) which includes 180 countries, covers the period 1963–2000 and contains an indicator for

economic liberalization originally defined in Sachs, Warner, Åslund and Fischer (1995) and updated
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in Wacziarg andWelch (2008) (hereafter, the Sachs-Warner indicator). More details on the data and

the definition of economic liberalization can be found in Section S.6 of the Supplemental Appendix.

Billmeier and Nannicini (2013) studied the effect of economic liberalization—as measured by the

Sachs-Warner indicator—on GDP per capita, to understand whether the adoption of liberalization

programs affected economic growth. Building on their study of Sub-Saharan Africa, we illustrate

how our formal inference framework can be an essential tool to aggregate results and draw general

conclusions from synthetic control analyses under staggered treatment adoption by multiple treated

units. The ambitious scope of the analysis in Billmeier and Nannicini (2013) resulted in a large

number of synthetic control results. In Sub-Saharan Africa alone, they studied sixteen episodes of

liberalization that occurred at ten different periods. The results exhibited considerable heterogene-

ity, which the authors summarized by grouping the effects into four categories according to two

dimensions: whether the effect was positive and whether there was evidence that the effect was

robust rather than “coincidental” (a notion of statistical significance). The four categories were (a)

countries with a positive and strongly robust effect, (b) countries with a positive and somewhat

robust effect, (c) countries with a positive but non-robust effect, and (d) countries with a null

effect. They concluded that “Botswana is the only country clearly in the first group, offering a

truly convincing success story” (p. 995).

Billmeier and Nannicini (2013) adjudicated the robustness or statistical significance of each of the

sixteen effects with the Fisherian-type placebo test developed by Abadie et al. (2010), which was

the main inference tool available at the time. Our new inference framework allows us to reconsider

the evidence for Sub-Saharan Africa by providing formal tools to perform joint inference and draw

a general conclusion about the effects of liberalization by considering the evidence altogether rather

than piecemeal.

The data starts in the 1960s, which marks the beginning of Africa’s post-colonial era. Since

independence from their colonial rulers until the late 1980s, many countries in Sub-Saharan Africa

adopted neo-patrimonial political regimes based on the concentration of power in a single individual

and the resulting cultivation of personalistic politics, widespread clientelistic networks, and the use

of the resources of the state to achieve political legitimacy (Bratton and Van de Walle, 1997).

The 1980s put high stress on these regimes, as economic conditions deteriorated. Negative

economic growth, increased debt services as a proportion of exports, currency overvaluation, low
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commodity prices, low investment, and limited access to credit created an adverse economic en-

vironment that these non-democratic regimes were ill-equipped to handle. International finance

organizations such as the World Bank and the International Monetary Fund incentivized programs

of structural economic adjustment, with disputed success (Callaghy and Ravenhill, 1994).

The adverse economic conditions led to popular protests in the early 1990s, which marked the

beginning of a wave of transitions to democracy throughout the continent. Starting in the early

1990s, many countries started a process of political liberalization, partly influenced by the fall of

the Berlin Wall in November of 1989 and the subsequent collapse of the communist regimes of the

Soviet Union (Bratton and Van de Walle, 1997).

As illustrated in Figure 1, most countries in Sub-Saharan Africa adopted the economic liberal-

ization treatment between the late 1980s and the early or mid-1990s which, as just explained, was a

period of major political and economic transition in Africa and beyond. This means that, for many

countries in our sample, the economic liberalization treatment occurred nearly simultaneously with

other major political and economic shocks that influenced the World’s geo-political equilibrium.

Given these potential confounders, it is crucial to exploit the staggered adoption of the treatment

to make inferences. While the worldwide political changes between the late 1980s and early 1990s

affected all countries at the same time, the concrete measures of economic liberalization captured

by the Sachs index were introduced in different years for different countries. Our proposed synthetic

control methods allow us to define causal predictands and perform joint inferences that leverage

the staggered introduction of the treatment, while controlling for worldwide shocks affecting all

units.

3 Basic Framework

We set up a basic synthetic control framework that matches the empirical application in Section

2 and suffices to communicate key ideas of our proposed method. A more general and technically

more involved framework is deferred to Section 6.

Suppose that we observe N countries (“units”) for T years (“periods”). Countries are indexed

by i = 1, . . . , N , and years are indexed by t = 1, . . . , T . For each country i in year t, we can observe

the GDP per capita Yit (“outcome”) and a time Ti that indicates when country i adopted economic
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Figure 1: Staggered Treatment Adoption in Africa.
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Notes: A country i in year t is defined to be “closed” or “open” using to the Sachs index. Thick vertical lines–
corresponding to 1987 and 1991–delimit the three main liberalization waves of Billmeier and Nannicini (2013).

liberalization (“treatment”). Assume that a country remains economically liberalized whenever

t ≥ Ti. (In our empirical application this is always verified.) Without loss of generality, countries

are ordered in the adoption times so that 1 ≤ T1 ≤ T2 ≤ · · · ≤ TN ≤ ∞, with Ti = ∞ denoting

that country i remains untreated throughout the observation period. Let N = {i : Ti = ∞} be

the group of “never-liberalized” countries and E = {i : Ti < ∞} the group of “ever-liberalized”

countries. Define J0 = |N | and J1 = |E|, where we use |A| to denote the number of elements in A

for any finite set A.
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We are interested in the effect of economic liberalization on a country’s GDP per capita. Let

Yit(s) denote the potential GDP per capita of country i in year t that would be observed had country

i adopted the economic liberalization treatment in year s, for s = 1, . . . , T,∞, and assume Yit(s) =

Yit(∞) whenever t < s. Implicitly, these simplifications impose two standard assumptions: no

spillovers (the potential outcomes of country i depend only on i’s adoption time) and no anticipation

(a country’s potential outcomes prior to the treatment are equal to the outcomes it would have had

if it had never been treated). The observed GDP per capita Yit can be written as

Yit = Yit(∞)1(t < Ti) + Yit(Ti)1(t ≥ Ti).

That is, whenever the economic liberalization has not been adopted, we always observe the po-

tential GDP per capita under the “never-treated” status; otherwise the potential GDP per capita

corresponding to the adoption time Ti is observed.

Our primary goal is to make a prediction of the missing counterfactual GDP per capita Yit(∞)

for an ever-liberalized country in the post-treatment period; we then use this unit-level predictand

as the basis of a variety of other aggregate predictands.

For simplicity, we take all never-treated units in N as “donors” for SC prediction, and let all

years prior to the economic liberalization, {t : 1 ≤ t ≤ Ti−1}, be the training period used to obtain

the SC weights for each ever-liberalized country i ∈ E . The idea of SC is to find a vector of weights

on the donor countries such that the weighted average of pre-treatment GDP per capita of donor

countries matches that of the treated country as closely as possible, subject to some regularization

constraints. Let ∥·∥1 and ∥·∥2 denote the usual L1 and L2 vector norms respectively, and (vj : j ∈ A)

denote a vector consisting of all vj ’s with j ∈ A for a set A. In our empirical analysis below, the

SC weights are obtained via L1-L2 constrained least squares:

ŵ[i] = argmin
w∈W [i]

Ti−1∑
t=1

(
Yit −Y′

N tw
)2

for each i ∈ E , (3.1)

where YN t = (Yjt : j ∈ N ) is the vector of GDP per capita for donor countries at time t, and

W [i] = {w ∈ RJ0 : ∥w∥1 ≤ Q
[i]
1 , ∥w∥2 ≤ Q

[i]
2 } for some constants Q

[i]
1 > 0 and Q

[i]
2 > 0. The choices

of Q
[i]
1 and Q

[i]
2 are discussed in Section S.6.2.2 of the Supplemental Appendix. The prediction of
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country i’s counterfactual GDP per capita k periods after the economic liberalization is given by

Ŷi(Ti+k)(∞) = Y′
N (Ti+k)ŵ

[i], for each i ∈ E and 0 ≤ k ≤ T − Ti.

In what follows, we define a variety of causal predictands and construct their SC predictions

accordingly.

Example TSUS (Time-specific unit-specific predictand). The first predictand we consider is the

effect of the intervention for a specific unit in a specific time period, which is the primary causal

predictand of interest in classical SC analysis with only one treated unit.

For each ever-treated unit i ∈ E , we can define the TSUS predictand in each post-treatment

period:

τik := Yi(Ti+k)(Ti)− Yi(Ti+k)(∞), 0 ≤ k ≤ T − Ti.

In our empirical application, this predictand captures the effect of economic liberalization for a spe-

cific country, measured k years after the adoption of the liberalization policy. Given the prediction

Ŷi(Ti+k)(∞), we predict τik by

τ̂ik := Yi(Ti+k)(Ti)− Ŷi(Ti+k)(∞).

See Figure 2(a) for a graphical representation of τ̂ik. ⌟

Example TAUS (Time-averaged unit-specific predictand). When there are multiple post-

treatment periods, scholars may be interested in the effect on a treated unit averaged across all

periods. This defines the TAUS predictand, which takes the average over time of the TSUS pre-

dictands for an ever-treated unit i:

τi· :=
1

T − Ti + 1

T−Ti∑
k=0

τik.

In our empirical application, this is the effect of economic liberalization for a specific country,

averaged over the entire post-liberalization period. Given the TSUS prediction for country i in
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period k, we predict τi· by

τ̂i· :=
1

T − Ti + 1

T−Ti∑
k=0

τ̂ik.

See Figure 2(b) for a graphical representation of τ̂i·. ⌟

Example TSUA (Time-specific unit-averaged predictand). When there are multiple treated

units, it is also of interest to define a predictand that captures the average effect of the intervention

across a given group of units, at a single period in time. Let Q ⊆ {1, 2, · · · , T} be a set of adoption

times. The TSUA predictand is defined as

τQk :=
1

Q

∑
i:Ti∈Q

τik, Q = |{i : Ti ∈ Q}|.

In our empirical application, this is the average effect of economic liberalization for the group of

countries with adoption times in Q, measured k years after liberalization. In later empirical analysis

we consider the treatment effect for countries that liberalized in three different waves—before 1987,

between 1987 and 1991, and after 1991. Given the TSUS predictions, we predict τQk by

τ̂Qk :=
1

Q

∑
i:Ti∈Q

τ̂ik.

See Figure 2(c) for a graphical representation of τ̂Qk. ⌟

Example TAUA (Time-averaged unit-averaged predictand). Finally, when there are multiple

treated units and multiple post-treatment periods, we may be interested in a predictand that

captures the overall average effect of the intervention.

We define the TAUA predictand as the average of the TSUS predictands across all treated units

and over L post-treatment periods:

τ·· :=
1

LJ1

L∑
k=1

∑
i∈E

τik.

In our empirical application, this is the average effect of economic liberalization for all ever-

liberalized countries over L years after the policy adoption. We assume all ever-treated units

are observed at least L periods after the adoption for some L ≥ 0. However, since the observation
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ends at time T , some ever-treated units may have to be excluded in this definition as L varies.

Given the TSUS predictions, we predict τ·· by

τ̂·· :=
1

LJ1

L∑
k=1

∑
i∈E

τ̂ik.

⌟

We conclude this section with a final note on the nature of the predictands defined above. The

potential outcomes, treatment adoption times, and individual effects are all viewed as random

quantities. We assume that there is only a fixed (possibly small) number of ever-treated units

and time periods, which is often the case in synthetic control analysis and accommodates our

empirical application. Thus, the various predictands defined above are also random quantities

in general, which is why we prefer referring to them as “predictands” rather than as treatment

“effects”. However, we do occasionally use the term “effect” or “predicted effect” to emphasize

its randomness and to maintain consistency with the term used for analogous quantities defined

in the SC literature under a fixed, non-random potential outcomes framework. In classical large-

sample causal analysis, target parameters are often probability or ergodic (non-random) limits of

the average effects above as Q → ∞, J1 → ∞, and/or T − Ti → ∞. Although our results are also

valid in such large-sample settings, we develop statistical inference methods based on prediction

intervals that describe a region where a new realization of a random causal predictand of interest

is likely to be observed, rather than the usual confidence intervals giving a region in the parameter

space for a non-random parameter of interest.

4 Uncertainty Quantification

Let τ denote any of the four causal predictands defined above. Our goal is to construct a (random)

prediction interval I such that, with some high probability 1 − π over a conditioning set H , I

covers τ with a pre-specified probability 1− α given H :

P
{
P
[
τ ∈ I

∣∣H ]
≥ 1− α

}
≥ 1− π. (4.1)
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Figure 2: Graphical Representation of the Predictands.
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(c) Time-specific unit-averaged (TSUA) predictand.
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Generally, the choice of the conditioning set H determines the uncertainty that would not be taken

into account by the prediction interval. If we do not condition on anything, technically, H is a

trivial σ-field, and I reduces to an unconditional prediction interval. Since we regard synthetic

controls as a regression-based out-of-sample forecasting problem, where it is standard to condition

on the “covariates” (outcomes of donor countries in this context), we focus on the uncertainty from

the ever-treated countries. Thus, we let H = {Yit : i ∈ N , 1 ≤ t ≤ T}. Also, in practice one needs

to set a desired (conditional) coverage level (1 − α), say 90%, whereas the probability loss π over

H is a “small” number that only needs to be theoretically characterized. In this paper, all results

are valid if the training period is long enough (Ti−1 is large), with the associated probability 1−π

characterized precisely. Thus, we say that the conditional prediction interval offers finite-sample

probability guarantees. Our results imply that π → 0 as Ti → ∞, but no limits or asymptotic

arguments are used in this paper.

To better understand the sources of uncertainty of SC predictions, we define the target quantity

of the SC weights (conditional on H ) that is analogous to (3.1):

w
[i]
0 = argmin

w∈W [i]

E

[
Ti−1∑
t=1

(
Yit −Y′

N tw
)2

∣∣∣∣H
]
. (4.2)

Thus, we can write

Yit(∞) = Y′
N tw

[i]
0 + uit, i ∈ E , 1 ≤ t ≤ T, (4.3)

where uit is the corresponding pseudo-true residual relative to the conditioning set H . Then, for

each ever-treated country i ∈ E , we have the following decomposition of the counterfactual outcome

prediction:

Ŷi(Ti+k)(∞)− Yi(Ti+k)(∞) = Y′
N (Ti+k)(ŵ

[i] −w
[i]
0 )− ui(Ti+k),

where Y′
N (Ti+k)(ŵ

[i] −w
[i]
0 ) captures the in-sample uncertainty from the SC weights construction

using the pre-treatment information, and ui(Ti+k) captures the out-of-sample uncertainty from the

stochastic error in a specific post-treatment period. Notice that in-sample uncertainty quantification

is necessary in this scenario since the conditioning set Yit ̸∈ H for i ∈ E .
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Accordingly, a similar decomposition can be performed for the prediction τ̂ of τ :

τ̂ − τ = InErr(τ) + OutErr(τ),

where InErr(τ) and OutErr(τ) denote the in-sample error and the out-of-sample error associated

with the prediction of τ respectively. Specific expressions of such errors for each treatment effect

prediction are given below:

InErr(τik) = −Y′
N (Ti+k)(ŵ

[i] −w
[i]
0 ), OutErr(τik) = ui(Ti+k),

InErr(τi·) = − 1

T − Ti + 1

T−Ti∑
k=0

Y′
N (Ti+k)(ŵ

[i] −w
[i]
0 ), OutErr(τi·) =

1

T − Ti + 1

T−Ti∑
k=0

ui(Ti+k),

InErr(τQk) = − 1

Q

∑
i:Ti∈Q

Y′
N (Ti+k)(ŵ

[i] −w
[i]
0 ), OutErr(τQk) =

1

Q

∑
i:Ti∈Q

ui(Ti+k),

InErr(τ··) = − 1

LJ1

L∑
k=1

∑
i∈E

Y′
N (Ti+k)(ŵ

[i] −w
[i]
0 ), OutErr(τ··) =

1

LJ1

L∑
k=1

∑
i∈E

ui(Ti+k).

The target SC weights w
[i]
0 and the residual uit need to be understood in context. In principle,

the weights w
[i]
0 represent a “stable” cross-sectional relationship among treated and donor units

that can be learned in the training period and translated to the post-treatment period, which is

the common feature of all SC methods. In our empirical application, the outcome Yit is GDP per

capita, which is well known to be a non-stationary time series. Then, the idea of SC appears to

be more applicable when GDP per capita sequences of different countries are cointegrated, where

the “stable relationship” is given by the cointegrating vector, and the remainder uit is a stationary

series. Thus, we make the following assumption on the data generating process:

Assumption 1 (Data generating process). Assume that for each j ∈ N , Yjt = Yj(t−1) + vjt,

for each i ∈ E, Yit = Y′
N tw

[i]
0 + uit, and (u′

t,v
′
t)
′ is i.i.d. over t, where ut = (u1t, · · ·uJ1t)′ and

vt = (v(J1+1)t, · · · , vNt)
′. Assume vt is sub-Gaussian, and uit is sub-Gaussian conditional on H

with parameter σit for each i ∈ E.

The outcomes of donor units are assumed to follow the simple unit root process with sub-

Gaussian errors; other non-stationary patterns can also be accommodated at the cost of more

technicalities. The conditional sub-Gaussianity of uit, as precisely defined in Section 4.2, enables
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us to characterize the tail probability of uit exceeding a given bound, which is useful for quantifying

out-of-sample uncertainty, but can also be replaced with weaker moment conditions. We emphasize

that Assumption 1 is motivated by our empirical application and only used to illustrate the key idea

of our method; our theory is more general and can be applied to other types of data, e.g., weakly

dependent time series satisfying certain mixing conditions while allowing for a certain degree of

model misspecification. See more discussion in Sections 4.1 and 6 below. Also, we view (4.3) as a

predictive model, and the cointegrated system is merely one way to justify the SC approach; in the

Supplemental Appendix Section S.3, we briefly discuss an alternative justification that assumes a

linear factor model, and explain how to interpret the in-sample and out-of-sample uncertainty in

that scenario.

We employ an intuitive strategy to construct prediction intervals for any causal predictand τ

defined before. Specifically, if we can find random intervals [Min(τ),Min(τ)] and [Mout(τ),Mout(τ)]

that (conditionally) cover the in-sample error InErr(τ) and the out-of-sample error OutErr(τ),

respectively, with certain probabilities, i.e.,

P
{
P
[
Min(τ) ≤ InErr(τ) ≤Min(τ)

∣∣ H
]
≥ 1− αin

}
≥ 1− πin and

P
{
P
[
Mout(τ) ≤ OutErr(τ) ≤Mout(τ)

∣∣ H
]
≥ 1− αout

}
≥ 1− πout,

then, by a union bound we have

P
{
P
[
τ̂ −Min(τ)−Mout(τ) ≤ τ ≤ τ̂ −Min(τ)−Mout(τ)

∣∣H ]
≥ 1− αin − αout

}
≥ 1− πin − πout.

That is, the prediction interval I(τ) := [τ̂ −Min(τ) −Mout(τ), τ̂ − Min(τ) − Mout(τ)] achieves

(1 − αin − αout) coverage probability conditional on H , which holds with probability at least

(1 − πin − πout) over H . In practice, we can set, for example, αin = αout = α/2 to achieve the

desired coverage level 1− α, and our theory will precisely characterize πin + πout and guarantee it

is small at least when the training period is long enough. Bounding two errors separately makes

the resultant prediction interval for τ conservative, but it clearly differentiates the contribution of

the SC training procedure and the out-of-sample prediction procedure to the final inference.
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4.1 In-Sample Uncertainty Quantification

We begin with the in-sample uncertainty quantification for the SC prediction of the time-specific

counterfactual outcome Yi(Ti+k)(∞) for each ever-treated unit, and then extend it to the four causal

predictands defined before. Importantly, we take the decomposition (4.3) as a predictive model

with no structural meaning, which does not have to be a “correctly specified” mean regression

model. That is, we allow the outcomes of the donor countries YN t to be possibly correlated

with the SC residual uit, i.e., γ
[i] := E[YN tuit|H ] ̸= 0, which violates the standard identification

assumption for mean regression models. Accommodating this possibility is important, especially in

high-dimensional scenarios, since SC constraints in W [i] are usually imposed to make SC predictions

feasible, and probably more stable, rather than being grounded in prior knowledge of the true data

generating process.

Our proposed uncertainty quantification strategy only makes use of three basic facts: (i) ŵ[i] is

the optimizer of the sample-based SC problem (3.1); (ii) w
[i]
0 is the optimizer of the population-

based SC problem (4.2); and (iii) the L1-L2 constraint set W [i] used in our empirical application

is convex. Actually, (i) and (ii) are true by definition of SC, and (iii) are true for all commonly

used constraints, such as simplex, L1 constraint, L2 constraint, or some combinations thereof.

Consequently, it can be shown that the following inequality holds (deterministically):

(ŵ[i] −w
[i]
0 )′Q̂[i](ŵ[i] −w

[i]
0 )− 2(γ̂[i] − γ[i])′(ŵ[i] −w

[i]
0 ) ≤ 0 for each i ∈ E ,

where Q̂[i] =
∑Ti−1

t=1 YN tY
′
N t and γ̂[i] =

∑Ti−1
t=1 YN tuit. Therefore, the following bounds on the

in-sample error of the prediction Ŷi(Ti+k)(∞) hold:

inf
δ∈M[i]

γ̂

Y′
N (Ti+k)δ ≤ Y′

N (Ti+k)(ŵ
[i] −w

[i]
0 ) ≤ sup

δ∈M[i]
γ̂

Y′
N (Ti+k)δ,

where M[i]
γ̂ = {δ ∈ ∆[i] : δ′Q̂[i]δ− 2(γ̂[i]−γ[i])′δ ≤ 0} and ∆[i] = {δ : δ+w

[i]
0 ∈ W [i]}. Conditional

on H , γ̂[i] is random, making the feasible set M[i]
γ̂ , and thus the resulting upper and lower bounds,

stochastic as well. We can employ a normal distributional approximation of γ̂[i] and, for instance,

set the lower and upper bounds to (αin/2)-quantile of infδ∈M[i]
G

Y′
N (Ti+k)δ and (1−αin/2)-quantile
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of sup
δ∈M[i]

G

Y′
N (Ti+k)δ, respectively, conditional on H , where M[i]

G = {δ ∈ ∆[i] : δ′Q̂[i]δ−2G[i]′δ ≤

0}, G[i]|H ∼ N(0,Σ[i]) and Σ[i] = V[γ̂[i]|H ]. Such an interval has at least (1 − αin) conditional

coverage probability for the in-sample error Y′
N (Ti+k)(ŵ

[i] −w
[i]
0 ).

However, the above bounds cannot be directly implemented in practice because the normalized

constraint set ∆[i] depends on the unknown pseudo-true value w
[i]
0 , and the normal vector G[i]

depends on the unknown covariance matrix Σ[i]. We thus propose a feasible simulation-based

strategy allowing for possibly nonlinear constraints, with unknown quantities replaced with plug-in

approximations thereof.

First, we need a feasible constraint set ∆[i]⋆ used in simulation that is “locally” similar to ∆[i].

Intuitively, we require that every point in the original infeasible constraint set ∆[i] be close to

the feasible constraint set ∆[i]⋆ in simulation. Consequently, searching for an upper (or lower)

bound within the infeasible set ∆[i] can be replaced by doing so within the feasible set ∆[i]⋆. In

our empirical application, ∆[i] is the L1-L2 constraint, which can be decomposed into a sequence

of linear constraints on the weights vector w = (wj : j ∈ N ) of the form
∑

j∈N ajwj ≤ Q
[i]
1

for some aj ∈ {+1,−1}, plus the L2 constraint
∑

j∈N w2
j ≤ (Q

[i]
2 )2. Let m

[i]
ℓ (w) ≤ 0 denote a

generic inequality among them and d≤ be the total number of constraints. We first use a parameter

ϱ[i] = C [i] log T0

T0
as a bound on the deviation of ŵ[i] from w

[i]
0 , where C [i] is some constant and can be

chosen in a data-dependent way as described in Section 6.2. Then, we introduce a sequence of tuning

parameters ϱ
[i]
ℓ ’s, where ϱ

[i]
ℓ = J0ϱ

[i] if m
[i]
ℓ (w) ≤ 0 is a linear constraint, and ϱ

[i]
ℓ = 2∥ŵ[i]∥1ϱ[i] if

m
[i]
ℓ (w) ≤ 0 is the L2 constraint. Importantly, the order of ϱ

[i]
ℓ accommodates the non-stationary

data in our application and makes the condition on the “closeness” between ∆[i] and ∆[i]⋆ required

in our general Theorem 1 hold. Now, given the parameters ϱ
[i]
ℓ ’s, we enforce the ℓ-th constraint

to be binding in the simulation, i.e., m
[i]
ℓ (w) ≤ m

[i]
ℓ (ŵ[i]), if m

[i]
ℓ (ŵ[i]) > −ϱ

[i]
ℓ ; otherwise, we keep

the original constraint ml(w)[i] ≤ 0. More discussion on methods to construct ∆[i]⋆ is available in

Section 6.2.

Second, we need an estimator Σ̂[i] of the covariance matrix Σ[i]. A variety of well-established

heteroskedasticity/serial-correlation-robust estimators can be used. We require Σ̂[i] to be a “good”

approximation of Σ[i] in the sense of condition (iii) in Corollary 1 below. This allows us to approx-

imate the infeasible normal distribution N(0,Σ[i]) by N(0, Σ̂[i]), which can be simulated using the

data.
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Once ∆[i]⋆ and Σ̂[i] are available, we can simply draw random vectors from N(0, Σ̂[i]) conditional

on the data, and then set

Min = c⋆(αin/2)− ε∆ and Min = c̄⋆(1− αin/2) + ε∆, (4.4)

where

c⋆(αin/2) = (αin/2)-quantile of inf
δ∈M[i]⋆

G

Y′
N (Ti+k)δ

c̄⋆(1− αin/2) = (1− αin/2)-quantile of sup
δ∈M[i]⋆

G

Y′
N (Ti+k)δ,

conditional on the data, with M[i]⋆
G = {δ ∈ ∆[i]⋆ : δ′Q̂[i]δ − 2(G[i]⋆)′δ ≤ 0} and G[i]⋆|Data ∼

N(0, Σ̂[i]). The constant ε∆, intuitively, measures the local “distance” between the two constraint

sets ∆[i] and ∆[i]⋆ and is used to adjust for nonlinear constraints such as the L2 constraint imposed

in our SC construction. However, in other applications with linear constraints (e.g., simplex and

lasso) only, this adjustment is unnecessary so that we can set ε∆ = 0. In our empirical application,

we set ε∆ = C(log T0)
2T−2

0 ∥YN (Ti+k)∥1 for some constant C > 0, which accommodates the non-

stationarity of the data and applies to the counterfactual outcome prediction problem; a general

data-dependent strategy for selecting ε∆ is proposed in Section 6.3. Under some mild regularity

conditions, [Min,Min] is a feasible prediction interval that achieves the desired conditional coverage

of the counterfactual outcome Yi(Ti+k).

Now, we are ready to construct bounds on the in-sample error for each treatment effect prediction.

Example TSUS (Time-specific unit-specific predictand, continued). Since the in-sample error of

τ̂ik is the opposite of that of Ŷi(Ti+k), we simply set Min(τik) = −Min andMin(τik) = −Min. ⌟

Example TAUS (Time-averaged unit-specific predictand, continued). Since the in-sample error

of τ̂i· is (the opposite of) average in-sample error of Ŷi(Ti+k) over time, we can set Min(τi·) =

c⋆(αin/2)− ε∆(τi·) andMin(τi·) = c̄⋆(1− αin/2) + ε∆(τi·) where

c⋆(αin/2) = (αin/2)-quantile of inf
δ∈M[i]⋆

G

− 1

T − Ti + 1

T−Ti∑
k=0

Y′
N (Ti+k)δ,
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c̄⋆(1− αin/2) = (1− αin/2)-quantile of sup
δ∈M[i]⋆

G

− 1

T − Ti + 1

T−Ti∑
k=0

Y′
N (Ti+k)δ,

conditional on the data, and ε∆(τi·) = C(log T0)
2T−2

0 ∥ 1
T−Ti+1

∑T−Ti
k=0 YN (Ti+k)∥1 for some constant

C > 0. ⌟

Example TSUA (Time-specific unit-averaged predictand, continued). Since the in-sample error

of τ̂Qk is (the opposite of) average in-sample error of Ŷi(Ti+k) across multiple treated units, we can

set Min(τQk) = c⋆(αin/2)− ε∆(τQk) andMin(τQk) = c̄⋆(1− αin/2) + ε∆(τQk) where

c⋆(αin/2) = (αin/2)-quantile of inf
δ∈M∗

G

− 1

Q

∑
i:Ti∈Q

Y′
N (Ti+k)δ

[i],

c̄⋆(1− αin/2) = (1− αin/2)-quantile of sup
δ∈M∗

G

− 1

Q

∑
i:Ti∈Q

Y′
N (Ti+k)δ

[i],

conditional on the data, δ = (δ[i] : Ti ∈ Q) ∈ RQJ , M⋆
G = {δ ∈ ×i:Ti∈Q ∆[i]⋆ :

∑
i:Ti∈Q[δ

[i]′Q̂[i]δ[i]′−

2(G[i]⋆)′δ[i]′] ≤ 0}, and ε∆(τQk) = C(log T0)
2T−2

0 ∥ 1
Q

∑
i:Ti∈QYN (Ti+k)∥1 for some constant C >

0. In this case, the in-sample uncertainty depends on SC weights for multiple treated units, so

we aggregate the previously describe quadratic constraint for each δ[i] into one single quadratic

constraint for the entire vector δ. Note that with multiple treated units, we should draw the

long vector G⋆ := (G[i]⋆ : Ti ∈ Q) conditional on the data from N(0, Σ̂) with Σ̂ an estimate of

Σ = V[γ̂|H ] for γ̂ = (γ̂[i] : Ti ∈ Q). Therefore, the correlation structure among different treated

units is implicitly captured. ⌟

Example TAUA (Time-averaged unit-averaged predictand, continued). Since the in-sample

error of τ̂·· is (the opposite of) average in-sample error of Ŷi(Ti+k) across multiple treated units over

time, we set Min(τ··) = c⋆(αin/2)− ε∆(τ··) andMin(τ··) = c̄⋆(1− αin/2) + ε∆(τ··) where

Min(τ··) = (αin/2)-quantile of inf
δ∈M∗

G

− 1

LJ1

L∑
k=1

∑
i∈E

Y′
N (Ti+k)δ

[i]

Min(τ··) = (1− αin/2)-quantile of sup
δ∈M∗

G

− 1

LJ1

L∑
k=1

∑
i∈E

Y′
N (Ti+k)δ

[i],

conditional on the data, M⋆
G = {δ ∈ ×i:i∈E ∆[i]⋆ :

∑
i∈E [δ

[i]′Q̂[i]δ[i]′ − 2(G[i]⋆)′δ[i]′] ≤ 0} and
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ε∆(τ··) = C(log T0)
2T−2

0 ∥ 1
LJ1

∑L
k=1

∑
i∈E YN (Ti+k)∥1 for some constant C > 0. As in the previous

example, we draw random vectors G⋆ := (G[i]⋆ : i ∈ E) conditional on the data from N(0, Σ̂) with

Σ̂ an estimate of Σ = V[γ̂|H ] for γ̂ = (γ̂[i] : i ∈ E). ⌟

Remark 1 (Alternative Bounds). For the unit-averaged TSUA and TAUA predictands, we combine

the quadratic constraints from optimization into a single constraint on the entire (centered) SC

weights vector δ. This “aggregation” strategy is consistent with the view of taking (3.1) as a

multiple-equation regression problem, as detailed in Section 6. By contrast, we could also retain

the individual quadratic constraints δ[i]′Q̂[i]δ[i]′ − 2(G[i]⋆)′δ[i]′ ≤ 0, for Ti ∈ Q or i ∈ E , each

restricting a subvector δ[i] of δ. This alternative strategy applies to the special case of SC analysis

in which SC weights for each treated unit are constructed separately, yielding possibly tighter

bounds on in-sample errors; see more detailed discussion in Supplemental Appendix Section S.2.3.

In Table S.2 of the Supplemental Appendix, we also illustrate the potential improvement of this

method in our empirical application in terms of interval length. ⌟

Remark 2 (Scalable Optimization Implementations). The proposed bounds on in-sample errors

are suprema and infima of linear functions subject to some linear or quadratic constraints on

parameters. In Section S.5 of the Supplemental Appendix, we show such problems can be recast

as conic optimization programs, which gives massive speed improvement in practice. ⌟

4.2 Out-of-Sample Uncertainty Quantification

To bound the out-of-sample error, we propose an easy-to-implement approach based on non-

asymptotic concentration inequalities. Recall that by Assumption 1, uit −E[uit|H ] is conditional-

on-H sub-Gaussian with parameter σit, which implies that for any ε > 0,

P
(
|uit − E[uit|H ]| ≥ ε

∣∣∣H )
≤ 2 exp

(
− ε2

2σ2
it

)
.
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Consequently, for the out-of-sample error ui(Ti+k) of the counterfactual outcome prediction Ŷi(Ti+k),

we can set

Mout = −E[ui(Ti+k)|H ]−
√

2σ2
i(Ti+k) log(2/αout), and

Mout = −E[ui(Ti+k)|H ] +
√
2σ2

i(Ti+k) log(2/αout),

(4.5)

which yields a prediction interval [Mout,Mout] that covers −ui(Ti+k) with at least (1 − αout) con-

ditional coverage probability. We emphasize that the sub-Gaussianity assumption is one of many

possibilities. The above strategy could be applied using other concentration inequalities requiring

weaker moment conditions, though the resulting prediction intervals may be wider.

In practice, one could first construct pre-treatment residuals ûit = Yit −Y′
N tŵ

[i] for each i ∈ E

and t < Ti, and then estimate the conditional moments of uit employing various parametric or

nonparametric regression of ûit. Such estimates can then be translated into the necessary estimates

of E[ui(Ti+k)|H ] and σ2
i(Ti+k) for constructing Min andMout. The unknown conditional moments

could also be set using external information, or tabulated across different values to assess the

sensitivity of the resulting prediction intervals.

We can apply the same idea to bound the out-of-sample errors of the four treatment effect

predictions.

Example TSUS (Time-specific unit-specific predictand, continued). Since the out-of-sample

error in this case is uit, we simply set Mout(τik) = E[ui(Ti+k)|H ] − [2σ2
i(Ti+k) log(2/αout)]

1/2 and

Mout(τik) = E[ui(Ti+k)|H ] + [2σ2
i(Ti+k) log(2/αout)]

1/2. ⌟

Example TAUS (Time-averaged unit-specific predictand, continued). Since uit − E[uit|H ] is

condition-on-H sub-Gaussian with parameter σit, it can be shown that the out-of-sample error

OutErr(τi·), as the average of uit over time, is also sub-Gaussian, satisfying that for any ε > 0,

P(|OutErr(τi·)− E[OutErr(τi·)|H ]| ≥ ε|H ) ≤ 2 exp
(
− ε2

2σ2
i·

)
, σi· :=

1

T − Ti + 1

T∑
t=Ti

σit.

Therefore, we can set

Mout(τi·) =
1

T − Ti + 1

T−Ti∑
k=0

E[ui(Ti+k)|H ]−
√

2σ2
i· log(2/αout), and
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Mout(τi·) =
1

T − Ti + 1

T−Ti∑
k=0

E[ui(Ti+k)|H ] +
√
2σ2

i· log(2/αout).

This result holds regardless of the dependence structure of uit, but if uit is indeed independent over

t, the same result holds with σi· :=
1

T−Ti+1

(∑T
t=Ti

σ2
it

)1/2
, leading to an improved bound. ⌟

Example TSUA (Time-specific unit-averaged predictand, continued). In this scenario, the out-

of-sample error OutErr(τQk) is a cross-sectional average of uit at different times. The uncertainty

quantification strategy outlined previously in Example TAUS can still be applied, with the caveat

that it is uncommon in SC analysis to assume uit is stationary and/or independent over i. By

contrast, it is reasonable to assume uit is stationary and/or independent (at least weakly dependent)

over time. Therefore, we employ the concentration inequality that holds under a general dependence

structure and set

Mout(τQk) =
1

Q

∑
i:Ti∈Q

E[ui(Ti+k)|H ]−
√
2σ2

Qk log(2/αout), and

Mout(τQk) =
1

Q

∑
i:Ti∈Q

E[ui(Ti+k)|H ] +
√
2σ2

Qk log(2/αout)

with σQk := 1
Q

∑
i:Ti∈Q σi(Ti+k). ⌟

Example TAUA (Time-averaged unit-averaged predictand, continued). Since the adoption time

Ti may be heterogeneous across i, the out-of-sample error OutErr(τ··) is an average of out-of-sample

errors of different units in different periods, which is (conditionally) sub-Gaussian as well. Then,

we set

Mout(τ··) =
1

LJ1

L∑
k=1

∑
i∈E

E[ui(Ti+k)|H ]−
√
2σ2

·· log(2/αout), and

Mout(τ··) =
1

LJ1

L∑
k=1

∑
i∈E

E[ui(Ti+k)|H ] +
√
2σ2

·· log(2/αout)

with σ·· :=
1

LJ1

∑K
k=1

∑
i∈E σi(Ti+k). ⌟

In addition to the concentration-based approach described above, other strategies, including

location-scale models and quantile regression, were proposed in Cattaneo, Feng and Titiunik (2021)
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for out-of-sample uncertainty quantification. We briefly review them in Supplemental Appendix

Section S.2.1.

4.3 Theoretical Justification

The following corollary, as a special case of our more general results presented in Section 6, provides

a theoretical justification of the proposed method, which closely matches our empirical application.

Let T0 = T1 − 1, and Q̃ = 1
T0

∑T0
t=1 G̃(t/T0)G̃(t/T0)

′ where G̃ is a mean-zero Brownian motion on

[0, 1] with variance E[vtv
′
t]. We use smin(A) and smax(A) to denote the minimum and maximum

singular values of a matrix A, respectively. Also, for simplicity, in the following corollary we define

Σ = V[γ̂|H ] for γ̂ = (γ̂[i] : i ∈ E) and let Σ̂ be an estimator of Σ, as in Example TAUA.

Corollary 1. Let Assumption 1 hold. In addition, suppose that with probability over H at least

1− π0, the following conditions hold:

(i) min1≤t≤T smin(E[utu
′
t|H ]) > η for some constant η > 0;

(ii) (log T0)
−1/5 ≤ smin(Q̃) ≤ smax(Q̃) ≤ (log T0)

1/5;

(iii) P(∥Σ̂−Σ∥ ≤ ϵ⋆Σ,1)|H ) ≥ 1− ϵ⋆Σ,2 with ϵ⋆Σ,1 ≤
T 2
0 η

8
√
d(log T0)1/5

;

(iv) For all 1 ≤ ℓ ≤ d≤, ϱ
[i]
ℓ < |m[i]

ℓ (w
[i]
0 )| − (log T0)T

−1
0 if m

[i]
ℓ (w

[i]
0 ) ̸= 0.

Then, for any causal prediction τ̂ ∈ {τ̂ik, τ̂i·, τ̂Qk, τ̂··}, when T0 is large enough,

P
{
P
(
τ ∈ [τ̂ −Min(τ)−Mout(τ), τ̂ −Min(τ)−Mout(τ)]

∣∣H )
≥ 1− αin − αout − ϵ

}
≥ 1− π,

where ϵ = 2Cϵ(log T0)
2T

−1/2
0 + 4ϵ⋆Σ,1

√
d(log T0)

1/5T−2
0 η−1 + ϵ⋆Σ,2 + 3T−1

0 , π = π0 +
Cπ
T0
, and Cϵ and

Cπ are some constants characterized in the proof.

The additional technical conditions imposed in this corollary are intuitive: (i) is a mild restriction

used to guarantee the variance matrixΣ is non-degenerate; (ii) is used to characterize the upper and

lower bounds on the matrices Q̂[i] and can be shown to hold with high probability when T0 is large;

(iii) is a high-level condition on the convergence of the variance estimator Σ̂ and can be verified

on a case-by-case basis; and (iv) guarantees that the non-binding constraints can be differentiated

from the binding ones under our thresholding rule, making the “closeness” requirement for the

constraint sets imposed in Theorem 1 satisfied. If these conditions hold with high probability (π0 is
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small), then this corollary shows that the proposed prediction intervals can achieve approximately

(1−αin−αout) conditional coverage probability, with the probability loss ϵ decreasing as T0 grows

and ϵ⋆Σ,1 and ϵ⋆Σ,2 get small (the variance estimator Σ̂ becomes more “precise”).

4.4 Simultaneous Prediction Intervals

So far we have focused on constructing prediction intervals that have high coverage of the desired

predictands or treatment effects, in particular, the TSUS predictand, which captures the effect of

the intervention for a given unit in each post-treatment period. In some applications, it might

be appealing to construct prediction intervals that have high simultaneous coverage in multiple

post-treatment periods, usually termed simultaneous prediction intervals. They can be employed

to test, for example, whether the largest (or smallest) treatment effect across different periods is

significantly different from zero.

Specifically, for a particular treated unit i ∈ E , we aim to construct a sequence of intervals Ik for

0 ≤ k ≤ L for some L ≤ T − Ti such that

P
{
P
[
τik ∈ Ik, for all 0 ≤ k ≤ L

∣∣H ]
≥ 1− α

}
≥ 1− π.

As described before, the uncertainty of the predicted TSUS effect τ̂ik comes from the in-sample

error InErr(τik) = −Y ′
N (Ti+k)(ŵ

[i] −w
[i]
0 ) and the out-of-sample error OutErr(τik) = ui(Ti+k).

Regarding the in-sample error, the following is an immediate generalization of the bound de-

scribed in Section 4.1, which enjoys simultaneous coverage in multiple periods:

Min(τik) = c⋆(αin/2)− ε∆ and Min(τik) = c̄⋆(1− αin/2) + ε∆, (4.6)

where

c⋆(αin/2) = (αin/2)-quantile of inf
δ∈M[i]⋆

G , 0≤k≤L

−Y′
N (Ti+k)δ

c̄⋆(1− αin/2) = (1− αin/2)-quantile of sup
δ∈M[i]⋆

G , 0≤k≤L

−Y′
N (Ti+k)δ,

and the constant ε∆, as before, is a small tuning parameter used to adjust for nonlinear constraints
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and can be set to zero if all constraints are linear. Given the adjustment ε∆(τik) for each post-

treatment period (see Example TSUS in Section 4.1), we can set ε∆ = max0≤k≤L ε∆(τik). It can

shown that this generally guarantees that [Min(τik), Min(τik)] can simultaneously cover the in-

sample error InErr(τik) for all 0 ≤ k ≤ L, with P(·|H )-probability at least 1 − αin, up to some

small loss.

Regarding the out-of-sample error, an easy-to-implement strategy analogous to that described

in Section 4.2 is to adjust the bounds on the out-of-sample error OutErr(τik) = ui(Ti+k) based

on maximal inequalities. Recall that each ui(Ti+k) − E[ui(Ti+k)|H ], 0 ≤ k ≤ L, is conditional

sub-Gaussian with parameter σi(Ti+k) (but is not necessarily independent over k). Then,

P
(

max
0≤k≤L

|ui(Ti+k) − E[ui(Ti+k)|H ]| ≥ ε
∣∣∣H )

≤ 2
L∑

k=0

exp
(
− ε2

2σ2
i(Ti+k)

)
.

If σi(Ti+k) ≤ σi for all 0 ≤ k ≤ T − Ti, then one can set Mout = E[ui(Ti+k)|H ] − ε and

Mout = E[ui(Ti+k)|H ] + ε with ε =
√

2σ2
i log(2(L+ 1)/α2). It can be shown that [Mout, Mout]

can simultaneously cover OutErr(τik) for all 0 ≤ k ≤ L, with P(·|H )-probability at least 1− αout.

Compared with prediction intervals with validity for each period constructed the same way, these

simultaneous prediction intervals are slightly wider due to the additional factor
√
log(L+ 1). In

practice, one only needs to estimate the conditional mean and variance of uit using the pre-treatment

residuals; flexible parametric or non-parametric estimation methods can be used.

Again, the sub-Gaussianity assumption can be relaxed by using other concentration inequalities

requiring weaker moment conditions, though the resulting simultaneous prediction intervals may be

wider. Also, there are other strategies to construct prediction intervals that simultaneously cover

multiple out-of-sample errors, though they are computationally more cumbersome and usually

require more stringent conditions. See Supplemental Appendix Section S.2.2 for a brief discussion.

The idea outlined above to achieve simultaneous coverage is general and can also be used to,

for example, construct prediction intervals that simultaneously cover the TSUS predictands for

multiple treated units rather than for multiple post-treatment periods. In our empirical application,

we construct simultaneous prediction intervals for time-averaged effects across different economies;

see details in Section 5.
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5 Empirical Results

We use our framework to evaluate the effect of economic liberalization on (log) real GDP per

capita in the sixteen countries that adopted economic liberalization in Sub-Saharan Africa: Benin,

Botswana, Cabo Verde, Cameroon, Gambia, Ghana, Guinea, Guinea-Bissau, Ivory Coast, Mali,

Mauritius, Niger, South Africa, Uganda, and Zambia.

We emphasize that when the target predictand does not involve an average across countries (e.g.,

TSUS and TAUS), we include not-yet-treated countries in the donor pool. Including not-yet-treated

units in other scenarios would raise issues, as their pre-treatment features would appear both in the

conditioning set H and in A, thereby invalidating the attempt of quantifying their contribution

to prediction uncertainty.

Overall, our point predictions suggest that (external) liberalization episodes in Sub-Saharan

Africa had no impact on GDP per capita. Although we find that the point prediction for Botswana

is large and positive, our predictands and uncertainty characterization indicate that this predicted

effect cannot be distinguished from zero. Our new evidence thus suggests that Botswana’s success

story was possibly the cause rather than the consequence of economic liberalization. In what

follows, we report the predictands described in Section 3, Examples TSUS, TAUS, and TSUA.

In all our results, we compute the weights using an L1-L2 constraint and use pre-treatment GDP

as the only feature. In the Supplemental Appendix Section S.7, we also report the results using

(i) a simplex-type constraint, (ii) a ridge-type constraint, (iii) more than one feature, (iv) using

placebo treatment dates, and (v) leaving one of the donors out at a time. All the implementation

details are reported in Supplemental Appendix Section S.6.

TSUS predicted effects in every period after liberalization (τik). We first analyze the predicted

treatment effect for every individual country that adopts liberalization in each post-liberalization

period (up to five years after adoption), which is an example of the TSUS predictand. In Figure 3,

we show the predicted synthetic control outcomes (panel (a)) with the corresponding 90% prediction

intervals, and the computed weights ŵ[i], i ∈ E (panel (b)) for our sixteen countries.

In most countries, the realized trajectory of GDP per capita (black lines) lies roughly on top of

the synthetic one (blue lines), suggesting that in the absence of the liberalization event, real income

per capita would have been approximately equal. Looking at the 90% prediction intervals (blue
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Figure 3: Time-specific unit-specific (TSUS) predicted effects in every period, τ̂ik.
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Notes: Panel (a): TSUS prediction for every country in each of five periods after treatment. Blue bars report 90%
prediction intervals. In-sample uncertainty is quantified using 200 simulations, whereas out-of-sample uncertainty is
quantified using sub-Gaussian bounds. Panel (b): each dot represents the weight that the donor (row) gets in forming
the synthetic control for the treated unit (column). When there is no dot, it means that the unit was not part of the
donor pool for the treated unit in question.

vertical bars), we can see that in all cases the distance between the actual GDP series and the

counterfactual one is not different from zero with high probability for almost all units and periods.
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For Botswana, the realized trajectory of GDP per capita (black lines) lies above the synthetic

one, suggesting a positive treatment effect. However, the 90% prediction intervals show that this

effect cannot be distinguished from zero with high probability.

TAUS predicted effects, averaged over five years (τi·). The second causal predictand of interest is

the effect for each of the sixteen African countries we study, averaged over the five periods following

the liberalization treatment in each country (up to the year 2000). This is an example of the TAUS

predictand. Figure 4 shows that in all countries the liberalization episode seems to have a negligible

effect on real GDP per capita. By looking at the prediction intervals, we can see that no treated

unit shows a negative average effect with high probability.

Although Bostwana’s predictand is the highest, once uncertainty is quantified this effect cannot

be distinguished from zero with high probability.

TSUA predicted effects, averaged over countries that liberalized in each of three waves: before

1987, between 1987 and 1991, and after 1991 (τQ1k, τQ2k, τQ3k). In interpreting the evidence for

each individual country, Billmeier and Nannicini (2013) consider the hypothesis that liberalization

only led to economic growth for countries that liberalized early. Our framework allows us to group

countries according to the era in which they liberalized and consider their joint trajectory in a

formal way. To do so, we use the three waves considered by Billmeier and Nannicini (2013) and

study three different predictands that average over all countries that liberalized during each wave:

the TSUA effect for all countries that liberalized before 1986 (Botswana, Gambia, Ghana, and

Guinea), τQ1k with Q1 = {t : t < 1987}; the TSUA effect for all countries that liberalized between

1987 and 1991 (Benin, Cabo Verde, Guinea-Bissau, Mali, South Africa, and Uganda), τQ2k with

Q2 = {t : 1987 ≤ t ≤ 1991}; and the TSUA effect for all countries that liberalized between

1992 and 1994 (Burkina Faso, Burundi, Cameroon, Ethiopia, Ivory Coast, Mozambique, Niger,

Tanzania, and Zambia), τQ3k with Q3 = {t : 1991 < t ≤ 1994}. The predicted effect is calculated

for every post-liberalization period (up to five years), each representing a specific example of the

TSUA predictand.

Our evidence does not support their hypothesis. The results, presented in Figure 5, show that,

with high probability, we can conclude that countries that liberalized followed a trajectory similar

to the counterfactual under no liberalization in the three waves. Although the trajectory of the
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Figure 4: Time-averaged unit-specific (TAUS) predicted effects, averaged over five years, τ̂i·.
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[i]
j , i ∈ E , j ∈ N

Notes: Panel (a): TAUS prediction for every country averaged over the five periods following treatment (up to the
year 2000). Blue bars report 90% prediction intervals. In-sample uncertainty is quantified using 200 simulations,
whereas out-of-sample uncertainty is quantified using sub-Gaussian bounds. Panel (b): each dot represents the weight
that the donor (row) gets in forming the synthetic control for the treated unit (column). When there is no dot, it
means that the unit was not part of the donor pool for the treated unit in question.
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early adopters is above the counterfactual, Figure 5(a) shows that the average effect for the early

treated countries starts to diverge from the counterfactual trajectory of the synthetic control even

before the treatment is adopted. Even if spurious, the observed divergence cannot be distinguished

from zero once we use our framework to account for uncertainty.

TSUA predicted effects, averaged over all liberalized countries (τEk). In this last and fourth exercise,

we focus on a popular causal predictand: the effect in every period after treatment averaged over

all the treated countries. This is yet another example of the TSUA predictand, with Q = E . This

predictand thus averages over all countries that liberalized, regardless of when they did so. We

report this predictand in every year after the adoption of liberalization (up to five years) which

occurs at different times for different countries. Figure 6 reports the results. To compute this

predictand, we first construct a synthetic control for each treated unit (see panel (b)) and then we

pool all the synthetic controls together in every post-treatment period to get a single prediction

and a single prediction interval. Panel (a) and panel (b) show that pooling across the 16 African

countries that embarked on liberalization programs helps reduce the uncertainty surrounding the

synthetic trajectory. Indeed, this TSUA predictand shows very similar trajectories of the synthetic

real income and the actual real income, which are indistinguishable from each other with high

probability for the average treated country.

6 Theoretical Foundations

This section presents a general framework that can accommodate more flexible specifications in SC

analysis. As in Section 3, we still consider the case with J0 never-treated units and J1 ever-treated

units that adopt a treatment at possibly different times. However, now we assume that a user may

want to obtain SC weights by matching on M features (denoted by a subscript l = 1, · · · ,M below)

with additional covariates adjustment, rather than relying solely on pre-treatment outcomes.

Specifically, let A
[i]
l = (a

[i]
1,l, · · · , a

[i]
Ti0,l

)′ ∈ RTi0 be the l-th feature of the treated unit i measured

in Ti0 (user-specified) pre-treatment periods. For each feature l and each treated unit i, there

exist J0 + K variables that are used to predict or match the Ti0-dimensional vector A
[i]
l . These

J0 +K variables are separated into two groups denoted by B
[i]
l = (B

[i]
1,l,B

[i]
2,l, · · · ,B

[i]
J0,l

) ∈ RTi0×J0

and C
[i]
l = (C

[i]
1,l, · · · ,C

[i]
K,l) ∈ RTi0×K , respectively. More precisely, for each j = 1, . . . , J0, B

[i]
j,l =
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Figure 5: Time-specific unit-averaged (TSUA) predicted effects in each period, averaged over three
groups of countries.

Countries that Liberalized Before 1987, τ̂Q1k

-10 0

-1.4

-1.2

-1.0

years to treatment

(l
og

)
G
D
P

p
er

ca
p
it
a
(U

S
D

th
sd
.)

Treated Synthetic Control

(a) Yit(Ti) and Ŷit(∞)
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Benin Cabo
Verde

Guinea
Bissau Mali South

Africa Uganda

-0
.5
0
-0
.2
5
0.
00
0.
25
0.
50
0.
75
-0
.5
0
-0
.2
5
0.
00
0.
25
0.
50
0.
75
-0
.5
0
-0
.2
5
0.
00
0.
25
0.
50
0.
75
-0
.5
0
-0
.2
5
0.
00
0.
25
0.
50
0.
75
-0
.5
0
-0
.2
5
0.
00
0.
25
0.
50
0.
75
-0
.5
0
-0
.2
5
0.
00
0.
25
0.
50
0.
75

Zimbabwe
Togo

Sierra Leone
Senegal
Rwanda
Nigeria
Malawi
Lesotho
Gabon
Congo
Chad

Angola

Weight

(d) ŵ
[i]
j , i ∈ E , j ∈ N

Countries that Liberalized after 1991, τ̂Q3k

-20 -10 0

-1.0

-0.8

-0.6

years to treatment

(l
o
g)

G
D
P

p
er

ca
p
it
a
(U

S
D

th
sd
.)

Treated Synthetic Control

(e) Yit(Ti) and Ŷit(∞)
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Notes: TSUA prediction in every period after treatment (up to five years), averaged over all countries that liberalized
in each of three waves: before 1987 (Botswana, Gambia, Ghana, and Guinea), between 1987 and 1991 (Benin, Cabo
Verde, Guinea-Bissau, Mali, South Africa, and Uganda), and after 1991 (Burkina Faso, Burundi, Cameroon, Ethiopia,
Ivory Coast, Mozambique, Niger, Tanzania, and Zambia). Blue bars report 90% prediction intervals, whereas blue-
shaded areas report 90% simultaneous prediction intervals. In-sample uncertainty is quantified using 200 simulations,
whereas out-of-sample uncertainty is quantified using sub-Gaussian bounds. Panel (b): each dot represents the weight
that the donor (row) gets in forming the synthetic control for the treated unit (column). When there is no dot, it
means that the unit was not part of the donor pool for the treated unit in question.
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Figure 6: Time-specific unit-averaged (TSUA) predicted effect, averaged over all treated units,
τ̂Ek.
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(b
[i]
j1,l, · · · , b

[i]
jTi0,l

)′ corresponds to the l-th feature of the j-th unit in the donor pool measured in

Ti0 pre-treatment periods, and for each k = 1, . . . ,K, C
[i]
k,l = (c

[i]
k1,l, · · · , c

[i]
kTi0,l

)′ is another vector

of control variables used to predict A
[i]
l over the same pre-intervention time span. Stacking the M

equations (corresponding to M features) for each treated unit, we define

A[i]︸︷︷︸
Ti0·M×1

=

A
[i]
1
...

A
[i]
M

 , B[i]︸︷︷︸
Ti0·M×J0

=

B
[i]
1
...

B
[i]
M

 , C[i]︸︷︷︸
Ti0·M×K·M

=


C

[i]
1 0 · · · 0

0 C
[i]
2 · · · 0

...
...

. . .
...

0 0 · · · C
[i]
M

 .

For instance, in the Supplemental Appendix we revisit our empirical application, whereA[i] contains

the (log) GDP per capita and the investment-to-GDP ratio (M = 2) of an ever-liberalized economy i

during the pre-liberalization period, and B[i] contains the same two features of the donor economies

used to match A[i]. For each feature l = 1, 2, C
[i]
l contains an intercept and a linear time trend

(K = 2).

We search for a vector of weights w = (w[1]′, · · · ,w[J1]′)′ ∈ W ⊆ RJ0J1 , which is common across

the M features, and a vector of coefficients r = (r[1]′, · · · , r[J1]′)′ ∈ R ⊆ RKMJ1 , such that the linear

combination of B[i] and C[i] matches A[i] as closely as possible, for all i ∈ E . The feasibility sets

W and R capture the restrictions imposed. Analogously to (3.1), such SC weights are obtained

via the following optimization problem: for some (T̃ ·M)× (T̃ ·M) symmetric weighting matrix V

with T̃ =
∑J1

i=1 T0i,

β̂ := (ŵ′, r̂′)′ ∈ argmin
w∈W, r∈R

(A−Bw −Cr)′V(A−Bw −Cr) (6.1)

where

A︸︷︷︸
T̃ ·M×1

=

A[1]

...

A[J1]

 , B︸︷︷︸
T̃ ·M×J0·J1

=


B[1] 0 · · · 0

0 B[2] · · · 0
...

...
. . .

...

0 0 · · · B[J1]

 , C︸︷︷︸
T̃ ·M×K·M·J1

=


C[1] 0 · · · 0

0 C[2] · · · 0
...

...
. . .

...

0 0 · · · C[J1]

 .

Accordingly, we write ŵ = (ŵ[1]′, · · · , ŵ[J1]′)′ where each ŵ[i] = (ŵ
[i]
1 , · · · , ŵ[i]

J0
)′ is the SC weights

on J0 donor units that are used to predict the counterfactual of the treated unit i. Similarly, write

r̂ = (r̂[1]′, · · · , r̂[J1]′)′ and β̂ = (β̂[1]′, · · · , β̂[J1]′)′.
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Remark 3 (Weighting Matrix). As pointed out by Ben-Michael et al. (2022), with multiple treated

units, the SC weights could be constructed in two ways: (i) optimizing the separate fit for each

treated unit; and (ii) optimizing the pooled fit for the average of the treated units. These ideas

can be accommodated by choosing a proper weighting matrix V. For example, assume Ti0 = T0

for simplicity. Taking V = IT0MJ1 yields

β̂ = argmin
w∈W,r∈R

J1∑
i=1

M∑
l=1

T0∑
t=1

(
a
[i]
t,l − b

[i]′
t,l w

[i]
l − c

[i]′
t,l r

[i]
l

)2
,

where B
[i]
l := (b

[i]
1,l, · · · ,b

[i]
T0,l

)′ is the l-th feature of the J0 donor units, and C
[i]
l := (c

[i]
1,l, · · · , c

[i]
T0,l

)′

is the additional K variables used to predict A
[i]
l . The objective above is equivalent to minimizing

the sum of squared errors of the pre-treatment fit for each treated unit and thus is termed “separate

fit”. By contrast, consider the following weighting matrix: V = 1
J2
1
1J11

′
J1

⊗ IT0M where ⊗ denotes

the Kronecker product operator. Then,

β̂ = argmin
w∈W,r∈R

M∑
l=1

T0∑
t=1

[
1

J1

J1∑
i=1

(
a
[i]
t,l − b

[i]′
t,l w

[i] − c
[i]′
t,l r

[i]
l

)]2
.

In this case, the goal is to minimize the sum of squared averaged errors across all treated units,

which is usually termed “pooled fit”. ⌟

Given the SC weights, the predicted counterfactual outcome of each treated unit i ∈ E is

Ŷi(Ti+k)(∞) := x
[i]′
Ti+kŵ

[i] + g
[i]′
Ti+kr̂

[i] = p
[i]′
Ti+kβ̂

[i], p
[i]
Ti+k = (x

[i]′
Ti+k, g

[i]′
Ti+k)

′, k ≥ 0,

where x
[i]
Ti+k is a vector of predictors of the donor units used to predict the counterfactual of the

treated unit i measured k periods after the treatment, and g
[i]
Ti+k is a vector of predictors that

correspond to the additional control variables specified in C[i]. In general, variables included in

x
[i]
Ti+k and g

[i]
Ti+k need not be the same as those in B[i] and C[i].

Again, let τ denote any of the four causal predictands defined in Section 3. Then, the prediction

of τ can be constructed accordingly and uniformly expressed as

τ̂ = L({Yit})− p′
τ β̂, (6.2)
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with L({Yit}) some linear combination of observed post-treatment outcomes and p′
τ β̂ the predic-

tion of the corresponding counterfactual. pτ here denotes a predictor vector associated with the

predictand τ , whose specific expression in each case is as follows:

pτik = (0′J0+KM , · · · ,0′J0+KM︸ ︷︷ ︸
(i−1) vectors

, p
[i]′
Ti+k, 0

′
J0+KM , · · · ,0′J0+KM︸ ︷︷ ︸

(J1−i) vectors

)′,

pτi· =
(
0′J0+KM , · · · ,0′J0+KM︸ ︷︷ ︸

(i−1) vectors

,
1

T − Ti + 1

∑
t≥Ti

p
[i]′
t , 0′J0+KM , · · · ,0′J0+KM︸ ︷︷ ︸

(J1−i) vectors

)′
,

pτQk
=

( 1

Q
p
[1]′
T1+k1(T1 ∈ Q),

1

Q
p
[2]′
T2+k1(T2 ∈ Q), · · · , 1

Q
p
[J1]′
TJ1

+k1(TJ1 ∈ Q)
)′
, and

pτ·· =
( 1

LJ1

L∑
k=1

p
[1]′
T1+k,

1

LJ1

L∑
k=1

p
[2]′
T2+k, · · · ,

1

LJ1

L∑
k=1

p
[J1]′
TJ1

+k

)′
,

where 0J0+KM denotes a (J0 +KM)-dimensional vector of zeros.

Analogously to (4.2), the pseudo-true value of SC weights in this framework is defined by

β0 := (w′
0, r

′
0)

′ = argmin
w∈W, r∈R

E
[
(A−Bw −Cr)′V(A−Bw −Cr)

∣∣∣H ]
, (6.3)

and then we can write

A = Bw0 +Cr0 +U, w0 ∈ W, r0 ∈ R, (6.4)

where U = (u[1]′, · · · ,u[J1]′)′ ∈ RT̃M is the corresponding pseudo-true residual relative to the σ-field

H = {B,C,pτ}.

As before, we differentiate the contribution of the in-sample error InErr(τ) and the out-of-sample

error OutErr(τ) to the uncertainty of SC prediction of τ . For in-sample uncertainty, the optimization

bounds used in Section 4.1 can be generalized to this setup. Specifically, let d = J0 + KM ,

Z = (B,C), Q̂ = Z′VZ, γ̂ ′ = U′VZ, γ = E[γ̂|H ], and ∆ = {β − β0 ∈ Rd : β ∈ W × R}.

It follows from the optimality of β̂ and β0 and the convexity of W and R that β̂ − β0 ∈ ∆

and (β̂ − β0)
′Q̂(β̂ − β0) − 2(γ̂ − γ)′(β̂ − β0) ≤ 0. Also, given the expression (6.2), InErr(τ)

can be generally expressed as −pτ (β̂ − β0). Then, a valid, though infeasible, prediction interval

for the in-sample error InErr(τ) is [c(αin/2), c(1 − αin/2)], where c(α) denotes the α-quantile of
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infδ∈MG
−p′

τδ and c(α) denotes α-quantile of supδ∈MG
−p′

τδ conditional on H for any α ∈ (0, 1),

with MG = {δ ∈ ∆ : δ′Q̂δ− 2G′δ ≤ 0}, G|H ∼ N(0,Σ) and Σ = V[γ̂|H ]. Analogously to (4.4),

once a feasible variance estimator Σ̂ of Σ and a feasible constraint set ∆⋆ that locally approximates

the original ∆ (in the sense of condition (iii) in Theorem 1 below) is available, we can set

Min(τ) = c⋆(αin/2)− ε∆(τ) and Min(τ) = c̄⋆(1− αin/2) + ε∆(τ) (6.5)

where c⋆(αin/2) is the (αin/2)-quantile of infδ∈M⋆
G
−p′

τδ, c̄
⋆(1−αin/2) is the (1−αin/2)-quantile

of supδ∈M⋆
G
−p′

τδ conditional on the data, and ε∆(τ), as in Section 4, is a tuning parameter

used to adjust for nonlinear constraints, with M⋆
G = {δ ∈ ∆⋆ : δ′Q̂δ − 2(G⋆)′δ ≤ 0} and

G⋆|Data ∼ N(0, Σ̂).

For out-of-sample error, analogously to (4.5), if OutErr(τ) is assumed to be sub-Gaussian condi-

tional on H with parameter σH , then we can set

Mout(τ) = E[OutErr(τ)|H ]−
√

2σ2
H log(2/αout) and

Mout(τ) = E[OutErr(τ)|H ] +
√

2σ2
H log(2/αout),

(6.6)

Now, we present a general theorem that justifies the above method under high-level conditions

and covers the results given in Section 4 as a special case. Let ∥ · ∥∗ be the dual norm of ∥ · ∥ for

any generic ℓp vector norm ∥ · ∥ on Rd with p ≥ 1, ∥ · ∥F the Frobenius matrix norm, and B(0, ε) an

ε-neighborhood around zero for some ε > 0. Define the distance between a point a ∈ Rd and a set

Λ ⊆ Rd by dist(a,Λ) = infλ∈Λ ∥a− λ∥.

Theorem 1. Assume W and R are convex, β̂ in (6.1) and β0 in (6.3) exist, H = σ(B,C,pτ ),

and Min(τ), Min(τ), Mout(τ) and Mout(τ) are specified as in (6.5) and (6.6). In addition, for

some finite non-negative constants ϵγ, πγ, ϖ
⋆
δ , ϵ

⋆
δ, π

⋆
δ , ϖ

⋆
∆, ϵ

⋆
∆, π

⋆
∆, ϵ

⋆
γ,1, ϵ

⋆
γ,2 and π⋆

γ, the following

conditions hold:

(i) P[P(p′
τ (β̂ − β0) ∈ [c(α0), c(1− α0)]|H ) ≥ 1− 2α0 − ϵγ ] ≥ 1− πγ for any α0 ∈ (0, 1);

(ii) P[P(sup{∥δ∥ : δ ∈ MG} ≤ ϖ⋆
δ |H ) ≥ 1− ϵ⋆δ ] ≥ 1− π⋆

δ ;

(iii) P[P(supa∈∆∩B(0,ϖ⋆
δ )
dist(a,∆⋆ ∩ B(0, ε)) ≤ ϖ⋆

∆ |H ) ≥ 1− ϵ⋆∆] ≥ 1− π⋆
∆;

(iv) P[P(∥Σ−1/2Σ̂Σ−1/2 − Id∥F ≤ 2ϵ⋆γ,1|H ) ≥ 1− ϵ⋆γ,2] ≥ 1− π⋆
γ;
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(v) OutErr(τ)− E[OutErr(τ)|H ] is sub-Gaussian conditional on H with parameter σH .

Then, for ϵ⋆γ,1 ∈ [0, 1/4] and ε∆(τ) ≥ ∥pτ∥∗ϖ⋆
∆,

P
{
P
(
τ ∈ [τ̂ −Min(τ)−Mout(τ), τ̂ −Min(τ)−Mout(τ)]

∣∣H )
≥ 1− αin − αout − ϵ

}
≥ 1− π,

where ϵ = ϵγ + 2ϵ⋆γ,1 + ϵ⋆γ,2 + 2ϵ⋆δ + ϵ⋆∆ and π = πγ + π⋆
γ + π⋆

δ + π⋆
∆.

Assumptions (i)–(iv) imposed in Theorem 1 are high-level, which are used for in-sample un-

certainty quantification and can be verified in many practically relevant scenarios such as the

cointegrated data considered in Section 4. We give more detailed discussion of each condition in

Section 6.1 below. Assumption (v), as we emphasized before, is a moment condition used to show-

case our out-of-sample uncertainty quantification strategy and can be relaxed by utilizing other

appropriate concentration inequalities. Finally, recall that the constant ε∆(τ) used to adjust for

nonlinear constraints is included in the in-sample error bounds Min(τ) andMin(τ), and a general

strategy for choosing ε∆(τ) is discussed in Section 6.3.

6.1 Discussion of Conditions (i)–(iv)

In this section, we discuss the justification of the high-level conditions (i)–(iv) in more detail.

• Condition (i). This condition formalizes the idea of distributional approximation of γ̂−γ by a

Gaussian vector G. It can be verified under different primitive conditions, such as Assumption 1

that accommodates non-stationary data and is applicable to our empirical application. Lemma

S.1 in the Supplemental Appendix provides a general way to verify condition (i) by assuming the

the pseudo-true residuals in U are independent over t conditional on H . In fact, (i) also holds

when the errors are only weakly dependent (e.g., β-mixing) conditional on H .

• Condition (ii). This is a mild condition on the concentration of δ ∈ MG. The requirement

δ′Q̂δ−2G′δ ≤ 0 is usually known as the basic inequality in regression analysis; see, for example,

Wainwright (2019, Chapter 7) for the case of lasso. The vector G is (conditional) Gaussian

by construction, making condition (ii) easy to verify based on well-known bounds for Gaus-

sian distributions. This condition holds in a variety of empirically relevant settings, including
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outcomes-only regression with i.i.d. data, multi-equation regression with weakly dependent data,

and cointegrated outcomes and feature settings.

• Condition (iii). This is a high-level requirement on the “closeness” between ∆ and ∆⋆. We

generalize the strategy for constructing ∆⋆ described in Section 4.1 to this more flexible setup,

which can be shown to satisfy condition (iii) if the constraints specified in W and R are formed

by smooth functions. Suppose that

W ×R =
{
β ∈ Rd : m=(β) = 0,m≤(β) ≤ 0

}
,

where m=(·) ∈ Rd= and m≤(·) ∈ Rd≤ and d= and d≤ denote the number of equality and

inequality constraints in W×R, respectively. Let the ℓ-th constraint in m≤(·) be m≤,ℓ(·). Given

tuning parameters ϱℓ > 0, ℓ = 1, · · · , d≤, let A = {ℓ1, · · · , ℓk} denote the set of indices for the

inequality constraints such that min,ℓ(β̂) > −ϱℓ. We define

∆⋆ =
{
β − β̂ : m=(β) = 0, m≤,ℓ(β) ≤ m≤,ℓ(β̂)1(ℓ ∈ A), ℓ = 1, · · · , d≤

}
. (6.7)

The following lemma verifies condition (iii) for this ∆⋆.

Lemma 1. Let ∥·∥ be the Euclidean norm for vectors and the spectral norm for matrices. Assume

that with probability over H at least 1 − π⋆
∆, the following conditions hold: (i) P(∥β̂ − β0∥ ≤

ϖ⋆
δ |H ) ≥ 1− ϵ⋆∆; (ii) m(·) = (m=(·)′,m≤(·)′)′ is twice continuously differentiable on B(β0, ϖ

⋆
δ )

with infβ∈B(β0,ϖ⋆
δ )
smin(

∂
∂β′m(β)) ≥ cmin for some constant cmin > 0; and (iii) for all 1 ≤ ℓ ≤ d≤

and some c > 0 specified in the proof, ϱℓ > cϖ⋆
δ and ϱℓ < |m≤,ℓ(β0)| − cϖ⋆

δ if m≤,ℓ(β0) ̸= 0.

Then, for ∆⋆ defined in (6.7), condition (iii) in Theorem 1 holds with ϖ⋆
∆ = C(ϖ⋆

δ )
2 for some

constant C > 0.

In this lemma, the tuning parameters ϱℓ are introduced to guarantee that with high probability,

we can correctly differentiate the binding inequality constraints from the other non-binding ones.

Section 6.2 below provides more practical details about choosing ϱℓ. Also, the concentration

requirement for β̂ specified in this lemma is mild. Since β̂ satisfies the basic inequality (β̂ −

β0)
′Q̂(β̂ − β0) − 2(γ̂ − γ)′(β̂ − β0) ≤ 0, the concentration of β̂ can be shown by combining
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a distributional approximation of γ̂ − γ by a Gaussian vector G and the idea outlined in the

previous discussion about condition (ii).

• Condition (iv). This is a requirement that Σ̂ be a “good” approximation of the unknown

covariance matrix Σ. Many standard covariance estimation strategies such as the family of

well-known heteroskedasticity-consistent estimators can be utilized.

6.2 Defining Constraints in Simulation

Section 6.1 proposes a procedure for constructing the constraint set ∆⋆ in simulation, which relies

on a sequence of tuning parameters ϱℓ, ℓ = 1, · · · , d≤, to determine which inequality constraints

are binding. Now, we propose a feasible strategy to select ϱℓ.

Suppose that each constraint imposed in the analysis only restricts the SC weights associated

with a particular treated unit (so there is no cross-treated-unit restriction), which is the most

common case in SC applications. Consider a generic inequality constraint m≤,ℓ(β
[i]) ≤ 0 associated

with the treated unit i. Our goal is to use ϱℓ to check if this inequality constraint is binding. Using

the Taylor expansion, if m≤,ℓ(β
[i]
0 ) = 0, then m≤,ℓ(β̂

[i]) ≈ ∂
∂β′m≤,ℓ(β

[i]
0 )(β̂[i] − β

[i]
0 ). We use this

formula to define a range within which m≤,ℓ(β̂
[i]) deviates from m≤,ℓ(β

[i]
0 ), with high probability.

Note that the basic inequality δ′Q̂δ − 2G′δ ≤ 0 in condition (ii) of Theorem 1, along with

the Gaussian approximation of γ̂ in condition (i), implies a bound on the deviation of β̂[i] from

β
[i]
0 : with high probability, ∥β̂ − β0∥ ≤ 2∥G∥/smin(Q̂). Motivated by this fact, we propose to use

ϱ[i] = C(log T0)
c/T

1/2
0 as a (data-dependent) bound on ∥β̂−β0∥, where c = 1/2 if the data are i.i.d.

or weakly dependent, and c = 1 if A[i] and B[i] form a cointegrated system, and C is one of the

following

C1 =
σ̂u

min1≤j≤J0 σ̂bj
, C2 =

max1≤j≤J0 σ̂bj σ̂u

min1≤j≤J0 σ̂
2
bj

, C3 =
max1≤j≤J0 σ̂bju

min1≤j≤J0 σ̂
2
bj

, (6.8)

where σ̂bj ,u is the estimated (unconditional) covariance between the pseudo-true residual u[i] and

the j-th column of B[i] (the features of the j-th control unit), and σ̂u and σ̂bj are the estimated

(unconditional) standard deviation of u[i] and the j-th column of B[i], respectively. If the synthetic

control weights were constructed based on both stationary and non-stationary features, the non-
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stationary components would govern the precision of the estimation. In such cases, one could ignore

the stationary components and set c = 1. Then, an intuitive choice of ϱℓ would be

ϱℓ =
∥∥∥ ∂

∂β
m≤,ℓ(β̂

[i])
∥∥∥
1
× ϱ[i]. (6.9)

If m≤,ℓ(β̂
[i]) > −ϱℓ, we let the ℓ-th constraint be binding in the simulation.

6.3 Adjustment for Nonlinear Constraints

When some constraints in ∆ are nonlinear (e.g., ridge-type constraints), we introduce a constant

ε∆(τ) to adjust the bounds on the in-sample error; this constant depends on the distance ϖ⋆
∆

between the localized constraint sets ∆ and ∆⋆ specified in condition (iii) of Theorem 1. This

adjustment is only necessary for nonlinear constraints; it is not needed when the constraints are

linear in parameters (e.g., simplex or lasso constraints).

The distance between ∆ and ∆⋆ typically depends on the first and second derivatives of the

constraint functions m≤(·). Again, we focus on the case in which there is no cross-treated-unit

constraint. Let S [i] be the set of indices for inequality constraints related to a generic treated unit

i. Denote by m≤,S[i](·) the vector of constraint functions m≤,ℓ(·) with ℓ ∈ S [i]. We propose to set

ε
[i]
∆(τ) = ∥p[i]

τ ∥1 ×
√
|S [i]|
2

s−1
min

( ∂

∂β
m≤,S[i](β̂[i])

)
× max

ℓ∈S[i]
smax

( ∂

∂β∂β′m≤,ℓ(β̂
[i])

)
× (ϱ[i])2,

where p
[i]
τ denotes the subvector of pτ that corresponds to β

[i]
0 . Denote by Eτ the set of treated

units to which the causal predictand τ is related. Then set

ε∆(τ) =
∑
i∈Eτ

ε
[i]
∆(τ).

When constraints are linear, the second derivative of m≤,ℓ(·) is zero, and the above choice of ε∆(τ)

is exactly 0. In the special case of L2 constraints used in our empirical application, the above choice

of ε
[i]
∆(τ) simplifies to ε

[i]
∆(τ) = ∥p[i]

τ ∥1 × (2∥β̂[i]∥2)−1 × (ϱ[i])2.
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7 Conclusion

We developed prediction intervals to quantify the uncertainty of a large class of synthetic control

predictions (or estimators) in settings with staggered treatment adoption. Because many synthetic

control applications have a limited number of observations, our inference procedures are based on

non-asymptotic concentration arguments. The construction of our prediction intervals is designed to

capture two sources of uncertainty: the first is the construction or estimation of the synthetic control

weights with pre-treatment data, and the second is the variability of the post-treatment outcomes.

By combining both sources in a prediction interval, our procedure offers precise non-asymptotic

coverage probability guarantees and allows researchers to implement sensitivity analyses to assess

how robust the conclusions of the analysis are to various levels of uncertainty. Our framework is

general, allowing for one or multiple treated units, simultaneous or staggered treatment adoption,

linear or non-linear constraints, and stationary or non-stationary data. To enhance implementation,

we also showed how to recast the methods as conic optimization programs and how to choose the

necessary tuning parameters in a principled data-driven way. We illustrated our methods with

an empirical application studying the effect of economic liberalization on real GDP per capita in

Sub-Saharan African countries, motivated by the work of Billmeier and Nannicini (2013).

All our methods are implemented in Python, R, and Stata software, which is publicly avail-

able (https://nppackages.github.io/scpi/), and discussed in detail in our companion article

Cattaneo, Feng, Palomba and Titiunik (2024) and in Section S.6 of the Supplemental Appendix.
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